# How I Learned to Stop Worrying and Love Definable Henselian Valuations 

Simone Ramello ${ }^{\text {he } / h i m ~}$<br>joint with Margarete Ketelsen (Münster) and Piotr Szewczyk (Dresden)<br>Institut für Mathematische Logik und Grundlagenforschung<br>University of Münster, Germany<br>21.09 .2023<br><br>MM<br>Mathematics<br>Münster<br>Cluster of Excellence

## The road ahead

$$
\text { I am a } \underbrace{\text { moderist theer }}_{\text {LOGIC }} \text { of } \underbrace{\text { valued fields. }}_{\text {ALGEBRA }} \text {. }
$$

Today, I will try to:

- Tell you what valued fields are.
- Tell you why model theorists care.
- Give you an idea of what results in this area look like.


## VALUATIONS AND WHERE TO FIND THEM

- Many fields come endowed with an absolute value, i.e. a notion of "size". A real number $r$ is large if its absolute value $|r|$ is.
- Without such a notion of size or distance, we can't even ask certain questions!
- Valuations are a generalization of absolute values which arise in many interesting situations.


## VALUATIONS AND WHERE TO FIND THEM, CONT'D

## Definition 0.1

A valuation on a field $K$ is a surjective map $v: K^{\times} \rightarrow \Gamma$, where $(\Gamma,+, \leq, o)$ is an ordered abelian group, such that:

- $v(x y)=v(x)+v(y)$, multiplying two elements sums their valuations
- $v(x+y) \geq \min \{v(x), v(y)\}$. all triangles are isosceles
(Counter)intuition: an element $r \in K^{\times}$is large if if its valuation $v(r) \in \Gamma$ is small, i.e. close to o. Along this intuition, we usually set $v(\mathrm{o}):=\infty$.


## My FAVOURITE EXAMPLE

Fix a prime number $p$.

- If $a \in \mathbb{Z} \backslash\{\mathrm{o}\}$, then

$$
v_{p}(a):=\max \left\{n \in \mathbb{N}: p^{n} \mid a\right\}
$$

For example, $v_{3}(6560)=\mathrm{o}$. According to $v_{3}$, then, 6560 is "big". But $v_{3}(6561)=8$, which is then "smaller" than 6560. If $a, b \in \mathbb{Z} \backslash\{0\}$ are coprime, then

$$
v_{p}\left(\frac{a}{b}\right):=v_{p}(a)-v_{p}(b)
$$

- This defines a valuation $v_{p}: \mathbb{Q} \backslash\{0\} \rightarrow \mathbb{Z}$, called the $p$-adic valuation. We can turn it into an ultrametric absolute value $|\cdot|_{p}$ on $\mathbb{Q}$ by $|x|_{p}:=p^{-v_{p}(x)}$.
- If we complete the corresponding metric space, we obtain a (new) valued field called $\mathbb{Q}_{p}$, with its own absolute value (and hence valuation) $|\cdot|_{p}$. These are the $p$-adic numbers.


## Why you should like the $p$-adics

- $\left(\mathbb{Q}_{p}, v_{p}\right)$ is crucial for algebraic purposes. But I'm a logician (allegedly)!
- A valuation is "the same" as its valuation ring, i.e. the subring

$$
\mathcal{O}_{v}=\{x \in K \mid v(x) \geq \mathrm{o}\}
$$

This is the part where I should tell you that $\infty$ is larger than all elements of $\Gamma$, and thus $o \in \mathcal{O}_{v}$.

- In the case of $\mathbb{Q}_{p}$, this subring is called $\mathbb{Z}_{p}$ (guess why!). Julia Robinson pointed out something remarkable about $\mathbb{Z}_{p}$ (for $p \neq 2$ ):

$$
\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p} \mid \exists Y\left(Y^{2}=1+p x^{2}\right)\right\}
$$

There is a similar formula for $p=2$.

- $\mathbb{Z}_{p}$ is given, as a subset of $\mathbb{Q}_{p}$, by a polynomial equation together with some quantifiers. We say that it is a definable set in the language of rings.

LOGICIANS, ASSEMbLE! CONT'D

Big question: Is this common? When is some valuation ring definable in the language of rings?

## The problem of henselianity

## Not all valuations are created equal.

- Take a field $K$ with a valuation $v$. I give you an algebraic extension $L$ of $K$, e.g. $L=K(\alpha)$ where $\alpha$ is the root of some polynomial over K. Can you extend $v$ to $L$ ? Yes, but often in several different ways.
- $v$ is henselian if there is a unique way to extend $v$ to any algebraic extension of $K$. A henselian valuation is a bit like a fill the gaps exercise in a textbook.
- $v_{p}$ is henselian. We will only care about henselian ones.

The big question, take 2

Big question: how often is
an henselian valuation ring definable in the language of rings?

A CANONICAL FRIEND

- To any valued field $(K, v)$ we can associate another "smaller" field, called the residue field,

$$
K v:=\{x \in K: v(x) \geq 0\} /\{x \in K: v(x)>o\} .
$$

Indeed, $\mathfrak{m}_{v}:=\{x \in K: v(x)>0\}$ is the unique maximal ideal of $\mathcal{O}_{v}=\{x \in K \mid v(x) \geq 0\}$.

- Henselian valuations on a given field $K$ arrange themselves nicely according to whether their residue field is separably closed or not,

$$
H_{1}(K):=\left\{v: K v \neq K v^{\text {sep }}\right\} \text { vs. } H_{2}(K):=\left\{v: K v=K v^{\text {sep }}\right\} .
$$

- $H_{1}(K)$ is linearly ordered by inclusion. The "middle point" between $H_{1}(K)$ and $H_{2}(K)$ is the canonical henselian valuation $v_{K}$.



## What we knew already

## Theorem 1 (Jahnke, Koenigsmann, '17)

Let $K$ be a non-separably closed henselian field such that $K v_{K}$ has characteristic o . Then,


## What we proved

## Theorem 2 (Ketelsen, R., Szewczyk, '23+)

Let $K$ be a non-separably closed henselian field such that $K$ is perfect of characteristic $p$. Then,


## The gist of it

$\underbrace{\exists \text { definable (non-trivial) henselian valuation }} \Longleftrightarrow \underbrace{\text { Conditions on a certain canonical valuation }}$ Logic question

