8 Hensel's lemma la completions

s equivalent forms of hencehanity

f Hensel's lemma

We will work with VK º7L.

We will figure out Hensel's lemma starting from a very basic question: given a valued field (K,N) and fEOVEX], how do we find a root of f in Or? A necessary condition is certainly that FEKV[X] has a root. Let ā EKV be such. This is of course not enough take revidues of the coefficients indeed, it may very well be that f(a) = 0. Yet, we may be optimistic and hope for bely such may $\overline{b} = \overline{a}$ in f(b) = 0. How do find such a b? The neuran requirement that $\overline{f}(\overline{a}) = \overline{O}$ is really the same as v(f(a)) 70, which insuitively speaking means that f(a) is very man - i.e., a is an approximation of a root of f. What we might be tempted to do is approach this like a numerical problem, so we might try to find a beller approximation of a roop than a, i.e. $b \in O_V$ s, that v(f(b)) = v(f(a)). To do that, we will use Newton's method: $b := a - \frac{f(a)}{f'(a)}$ F(X) Leb's ne whether b is really a better f(a) × approximation: f(b) $f(b) = f\left(a - \frac{f(a)}{f'(a)}\right) =$

$$Taylor expansion = f(a) + \left(-\frac{f(a)}{f'(a)}\right) f'(a) + \left(\frac{f(a)}{f'(a)}\right)^2 \cdot c$$
so,

$$f(b) = f(a) - f(a) + \left(\frac{f(a)}{f'(a)}\right)^2 \cdot c = \left(\frac{f(a)}{f'(a)}\right)^1 \cdot c$$
hence

$$v(f(b)) - v(f(a)) = 2v(f(a)) - 2v(f'(a)) + v(c) - v(f(a))$$

$$\Rightarrow v(f(a)) - 2v(f'(a))$$

$$\Rightarrow v(f(a)) - 2v(f'(a)) - 2v(f'(a))$$

$$= f'(a) - f'$$

i)
$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$$

ii) $v(f(a_{n+1})) > v(f(a_n))$.
Indeed, we may see that
 $v(a_2 \cdot a_n) = v\left(\frac{f(a_n)}{f'(a_n)}\right) = v\left(f'(a_n) \cdot \frac{f(a_n)}{f'(a_n)^2}\right)$
 $= v\left(f'(a_n)\right) + v\left(f(a_n)\right) - 2v\left(f'(a_n)\right)$
 $a_n = b = v(f'(b)) + v(f(b)) - 2v(f'(a))$
 $v(f'(b)) = v(f'(a)) + v(f(b)) - 2v(f'(a))$
 $= v(f'(a)) + v\left(\frac{f(a_n)}{f'(a_n)^2} \cdot c\right) - 2v(f'(a))$
 $v(f'(a)) > 0 > 2v(f(a)) - 2v(f'(a)) + v(c) - 2v(f'(a))$
 $v(c) > 0 > 2 \left[v(f(a)) - 2v(f'(a))\right]$
and more generally, $v(a_{n+n} - a_n) \ge 2^n \varepsilon$, so
 $f_{n \to \infty}$
This should ving a bell: $(a_{n+n} \cdot c_n) \le 2v(f'(a))$ is cauchy! Bub wall, we
dom't have a metric, right?

& INTERNIDE

Given $v: K^{\times} \rightarrow 7L$, we may give K a metric by $d_{v}(a,b) = \exp(-v(a-b)) \in \mathbb{R}^{7,0}$ is $\exp(-\infty) = 0$.

Ne can thus consider (K, d_v) as a method shall and Consider Cauchy sequences in it. To complete - prin not indended - our proof we will need $(a_n)_{n\in\mathbb{N}}$ to converge, i.e. (K, d_v) to be complete as a metric prace.

→ if (X,d) is not complete, we can always embed (X,d) as the dense subspace of a complete metric space (X,d), which is unique up to inometry over X. It is tuilt this way: 1) $\hat{X} = h(\operatorname{cancny sequences}^2/_{N}, \text{ where } (a_n)_n \sim (b_n)_n \Leftrightarrow \lim d(a_n, b_n) = 0,$ 2) $\hat{d}([a_n], [b_n]) = \lim d(a_n, b_n).$ Think of $\mathbb{Q}, \text{ with } \hat{d}(a_1, b) = 1 a - b1.$ Then $\hat{\mathbb{Q}} \simeq \mathbb{R}^{?}$ If we take d_{Y} instead, i.e. $d_{P}(a_1b) = p^{-V_{P}(a-b)}$, then $(\hat{\mathbb{Q}}, \hat{d}_{V_{P}}) = : (\mathbb{Q}_{P}, d_{P})^{?}$ is a friend we will meets often. We could write $\mathbb{Q}_{P} = \{\sum_{n \geq N} a_{n}p^{n} \mid N \in TL, a_{n} \in h \circ_{1}1, \dots p - N\} \}$ and do computations try course.

Then, if we assume $(K_{1}v)$ is complete (i.e., $(K_{1}dv)$ is complete as a metric space), $(a_{1n})_{n\in\mathbb{N}}$ has a huit $x\in\mathbb{Q}$ and we have

 $f(an) \rightarrow f(\alpha) \quad as f is continuous in the dy-topology$ $\Rightarrow \quad f(\alpha) = 0. \quad \text{Since} \quad v(f(an)) \rightarrow as \quad and \quad v(f(\alpha)) = hur v(f(au))$ $Moreover, \quad v(\alpha-a) \neq V(f'(a)) \neq 0 \quad and \quad so \quad \overline{\alpha} = \overline{\alpha}.$ $Summing \quad up,$

HENSEL'S LEMIMA. Suppose (K, v), $vK \ge 7L$, is a complete valued field. Then, for any $f \in Q(X)$ and a O = V such that v(f(a)) > 2v(f'(a)), there is $\forall \in Ov$ such that $v(\alpha - a) > v(f'(a))$ is $f(\alpha) = O$.

ii) (KII is hemetian,

in.) every polynomial of the form

$$\frac{x^{n} + x^{n-1} + a_{n-1} x^{n-2} + \dots + a_{0}}{with a_{i} \in \mathbb{M}_{+}, 0 \leq i \leq n \cdot 2_{1}, was a 4200 in K.}$$

$$\frac{PROSE, we prove (i) = (i^{-}) \Rightarrow (i^{-}i^{-}) \Rightarrow (i^{-}i^{-}) = \overline{P(a)} + \overline{D}.$$

$$(i \Rightarrow in). Take (eq_{i}(x)_{+} a \in D_{v} with \overline{P(a)} - \overline{D}, \overline{P(a)} + \overline{D}.$$

$$(i \Rightarrow in). Take (eq_{i}(x)_{+} a \in D_{v} with \overline{P(a)} - \overline{D}, \overline{P(a)} + \overline{D}.$$

$$(i \Rightarrow in). Take (eq_{i}(x)_{+} a \in D_{v} with \overline{P(a)} - \overline{D}, \overline{P(a)} + \overline{D}.$$

$$(i \Rightarrow in). Take (eq_{i}(x)_{+} a \in D_{v} with \overline{P(a)} - \overline{D}, \overline{P(a)} + \overline{D}.$$

$$(i \Rightarrow in). Take (eq_{i}(x)_{+} a \in D_{v} with \overline{P(a)} - \overline{D}, \overline{P(a)} + \overline{D}.$$

$$(i \Rightarrow in). Take (eq_{i}(x)_{+} a \in D_{v} with \overline{P(a)} + \overline{D}, with \overline{P(a)} + \overline{D}.$$

$$(i \Rightarrow in). Take (eq_{i}(x)_{+} a) = \overline{D}.$$

$$(i \Rightarrow in). Take (eq_{i}(x)_{+} a) = \overline{D}.$$

$$(i \Rightarrow in). Take (eq_{i}(x)_{+} a) = \overline{D}.$$

$$(i \Rightarrow in). Take point in the ave done; no around with the window of v to b. If n=4, one are done; no around the v in the window of the midple extension!) with $\overline{a_{i}} = \overline{e(a_{i})} = \overline{E(a_{i})} = \overline{a} = \overline{a_{i}},$

$$(i = in). we have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). we have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). we have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). we have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). we have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). we have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). we have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). We have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). We have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). We have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). We have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). We have$$

$$\overline{f} = (x_{i} A) x^{n-4}$$

$$(i = in). Anowne wat, no there in K \leq N.$$

$$(i = in). Anowne wat, no there in K \leq N.$$

$$(i = in). Anowne wat, no there in K \in N.$$

$$(i = in). Anowne wat, no there in K \in N.$$

$$(i = in). Anowne wat, no there in K \in N.$$

$$(i = in). Anowne wat, no there in K \in N.$$

$$(i = in). Anowne wat, no there in K \in N.$$

$$(i = in). Anowne wat, no there in K \in N.$$

$$(i = in). Anowne wat, no there in K \in N.$$

$$(i = in). Anowne wat, in a wingere probing ation the ine(i).$$

$$(i = in) A,$$$$

that then if
$$\xi \notin D_{i}$$
, $O_{i}^{i} = O_{i} \wedge L = \delta_{i} (O_{i}) \wedge L \neq O_{i}^{1}$. We can then
apply Neak Approximation and find $\beta \in R = O_{i}^{i} \dots \cap O_{n}^{i} \in L$
such that $\beta - A \in M_{n}^{i}$, $\beta \in M_{n}^{i}$ for $i \neq A$. As $O_{i}^{i} \neq O_{i}^{i}$, $\beta \notin K$: let
 f be its minimum only moutial over K_{i} gay
 $f(X) = X^{k} + a_{k-n} X^{k-n} + \cdots + a_{n}$
for none $a_{i} \in K$
Say $p - \beta_{n}, \dots, \beta_{k}$ are the conjugates of β in N . For $\delta \in G \cap D_{i}$,
 $\beta \in \delta(m_{1})$ by definition, so $\sigma(\beta) \in m_{1}$ for all $\sigma \in C \cap D$. As the
 $\beta_{2}, \dots, \beta_{k}$ are exactive $\delta(\beta_{n})$ for $\delta \in G \cap D_{i}$, $\beta_{i} \in M_{n}$, for all i .
And now
 $f(X) = TT (X - \beta_{i})$
satisfies
 $a_{k-4} = -i\beta_{1} + \dots + \beta_{k} N \in (1 + m_{n}) \cap K = 1 + m_{n}$
and $a_{i} \in m_{1} \cap K = m_{n}$.
Thus
 $g(X) = \frac{f(a_{k-n}X)}{(a_{k-1})^{k}} = \chi^{k} + \chi^{k-n} + a_{k-2}^{k-1} \chi^{k-1} + \cdots + a_{n}^{k} \in O_{i}[X]$
(annot have $a \neq m_{i}$.