TODAY:
§ Hensel's lemma la completions
\oint equivalent forms of hencelianity
\oint Hensel's lemma We will work with VK $\simeq T /$.

We will figure out Hensel's lemma stating frow a very basic question: given a valued field $\left(K_{1}, v\right)$ and $f \in O_{v}[x]$, how do we find a root of f in O_{v} ? A necessary condition is certainly that $\bar{f} \in K V[x]$ has a wot. Let $\bar{a} \in K V$ be such. This is of course not enough: take residues of the coefficients indeed, it may very well be that $f(a) \neq 0$. Yet, we may be optieustic and hope for $b \in O_{v}$ such that $\bar{b}=\bar{a}$ \& $f(b)=0$. How do find such $a b$?
The necessary requirement that $\bar{f}(\bar{a})=\overline{0}$ is really the same as $V(f(a))>0$, which intuitively speaking means that $f(a)$ is very small - ie., a is au approxinuation of a roof of f. What we might be tempted to do is approach this like a numerical problem, so we wight try to find a better appioxicuation of a nob than a_{1} i.e. $b \in O_{V}$ s, that $V(f(b))>V(f(a))$. To do that, we will use Newton's mebrod:

$$
b:=a-\frac{f(a)}{f^{\prime}(a)} .
$$

Let's see whether 6 is really a better approximation:

$$
f(b)=f\left(a-\frac{f(a)}{f^{\prime}(a)}\right)=
$$

$$
\text { Taylor expansion }=f(a)+\left(-\frac{f(a)}{f^{\prime}(a)}\right) f^{\prime}(a)+\left(\frac{f(a)}{f^{\prime}(a)}\right)^{2} \cdot C_{0}
$$

so,

$$
f(b)=f(a)-f(a)+\left(\frac{f(a)}{f^{\prime}(a)}\right)^{2} \cdot C_{1}=\left(\frac{f(a)}{f^{\prime}(a)}\right)^{2} \cdot C
$$

hence

$$
\begin{aligned}
v(f(b))-v(f(a)) & =2 v(f(a))-2 v\left(f^{\prime}(a)\right)+v(G)-v(f(a)) \\
& \geqslant v(f(a))-2 v\left(f^{\prime}(a)\right) \\
& >0 \quad \Leftrightarrow \quad v(f(a))>2 v\left(f^{\prime}(a)\right) .
\end{aligned}
$$

So we need to add $V(f(a))>2 V\left(f^{\prime}(a)\right)$ to our nypotheses.
Note that this already implies $V(f(a))>0$.
If we wait to iterate this, we need to check that this holds for b too, i.e. that $v(f(b))>2 v\left(f^{\prime}(b)\right)$. However,

$$
\left.\begin{array}{rl}
f^{\prime}(b) & =f^{\prime}\left(a-\frac{f(a)}{f^{\prime}(a)}\right) \\
\text { Taylor expanhoun } & =f^{\prime}(a)+\left(\begin{array}{c}
\left.-\frac{f(a)}{f^{\prime}(a)}\right)
\end{array} f^{\prime \prime}(a)+\cdots\right. \\
& =f^{\prime}(a)\left[1+\frac{f(a)}{\left(f^{\prime}(a)\right)^{2}} \cdot d\right. \\
Q_{v}
\end{array}\right]
$$

so $\quad v\left(f^{\prime}(b)\right)=v\left(f^{\prime}(a)\right)+v\left(1+\frac{f(a)}{f^{\prime}(a)^{2}} \cdot d\right)$

$$
=v\left(f^{\prime}(a)\right) \text { since } v\left(\frac{f(a)}{f^{\prime}(a)^{2}} d\right)=v\left(\frac{f(a)}{f^{\prime}(a)^{2}}\right)+v(d)>0
$$

aud hence

$$
v(f(b))>v(f(a))>2 v\left(f^{\prime}(a)\right)=2 v\left(f^{\prime}(b)\right) .
$$

This means that we caul iterate this! say $a_{0}=a_{1}, a_{1}=b_{1}, \cdots$ we obtain a sequence $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq O_{v}$ such that

$$
\begin{aligned}
& \text { i.) } a_{n+1}=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)} \\
& \text { i.) } v\left(f\left(a_{n+1}\right)\right)>v\left(f\left(a_{n}\right)\right) .
\end{aligned}
$$

Indeed, we may see that

$$
\begin{aligned}
v\left(a_{2}-a_{1}\right) & =v\left(\frac{f\left(a_{1}\right)}{f^{\prime}\left(a_{1}\right)}\right)=v\left(f^{\prime}\left(a_{1}\right) \cdot \frac{f\left(a_{1}\right)}{f^{\prime}\left(a_{1}\right)^{2}}\right) \\
& =v\left(f^{\prime}\left(a_{1}\right)\right)+v\left(f\left(a_{1}\right)\right)-2 v\left(f^{\prime}\left(a_{1}\right)\right) \\
a_{1}=6 & =v\left(f^{\prime}(b)\right)+v(f(b))-2 v\left(f^{\prime}(b)\right) \\
v\left(f^{\prime}(b)\right)=v\left(f^{\prime}(a)\right) & =v\left(f^{\prime}(a)\right)+v(f(b))-2 v\left(f^{\prime}(a)\right) \\
& =v\left(f^{\prime}(a)\right)+v\left(\left(\frac{f(a)}{f^{\prime}(a)}\right)^{2} \cdot c\right)-2 v\left(f^{\prime}(a)\right) \\
v\left(f^{\prime}(a)\right) \geqslant 0 & \geqslant 2 v(f(a))-2 v\left(f^{\prime}(a)\right)+v(a)-2 v\left(f^{\prime}(a)\right) \\
v\left(c_{1}\right) \geqslant 0 & \geqslant 2[\underbrace{v(f(a))-2 v\left(f^{\prime}(a)\right)}_{\varepsilon}]
\end{aligned}
$$

and move generally, $v\left(a_{n+1}-a_{n}\right) \geqslant 2^{n} \varepsilon_{1}$ so

$$
\lim _{n \rightarrow \infty} V\left(a_{n+1}-a_{n}\right)=\infty \text {. }
$$

This should ring a bell: $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq O_{v}$ is cauchy! But wait, we don't have a metric, right?
\oint INTERUDE
Given $v: K^{x} \rightarrow T h$, we may give k a metric ty

$$
d_{v}(a, b)=\exp (-v(a-b)) \in \mathbb{R}^{70} \text { \& } \exp (-\infty):=0 \text {. }
$$

We can thus consider $\left(K, d_{v}\right)$ as a metic space aud consider Cauchy sequences in it. To complete - mun nob iuxeuded-our proof we will need $\left(a_{n}\right)_{n \in \mathbb{N}}$ to converge, i.e. $\left(K_{1} d_{v}\right)$ to be
complete as a metric space.
\rightarrow if (X, d) is not complete, we caul always mold (x, d) as the dense subspace of a complete metric mace (\hat{x}, \hat{d}), winch is unique up to inometry over x. If is fruits this soy:

1) $\hat{x}=$ cauchy sequences? $/ v$, where $\left(a_{n}\right)_{n^{\sim}}\left(b_{n}\right)_{n} \Leftrightarrow \lim _{u \rightarrow \infty} d\left(a_{n}, b_{n}\right)=0$,
2) $\hat{d}\left(\left[a_{n}\right],\left[b_{n}\right]\right)=\lim d\left(a_{n}, b_{n}\right)$.

Think of \mathbb{Q}, with $n \rightarrow \infty,(a, b)=|a-b|$. Then $\hat{\mathbb{Q}} \simeq \mathbb{R}$?
If we take d_{p} instead, i.e. $d_{p}(a, b)=p^{-v_{p}(a-b)}$, then

$$
\left(\hat{\mathbb{Q}}, \hat{d}_{v_{p}}\right)=:\left(\hat{a}_{p}, d_{p}\right)
$$

is a friend we will meet often. We could write

$$
Q_{p}=\left\{\sum_{n \geqslant \mathbb{N}} a_{n} p^{n} \mid N \in \mathbb{Z}, a_{n} \in\{0,1, \ldots p-1\}\right\}
$$

and do computations fy cany-over.

Then, if we assume $\left(K_{1} v\right)$ is complete (i.e., $\left(K_{1} d v\right)$ is complete as a metric space), $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a timid $\alpha \in O$ and we have
$f\left(a_{n}\right) \rightarrow f(\alpha)$ as f is continuous in the d_{v}-topology $\Rightarrow f(\alpha)=0$. Since $v\left(f\left(a_{n}\right)\right) \rightarrow \infty$ and $v(f(\alpha))=\operatorname{hmu}_{n \rightarrow \infty} v(f(a u))$ Moreover, $v(\alpha-a)>V\left(f^{\prime}(a)\right) \geqslant 0$ and so $\bar{\alpha}=\bar{a}$.
Summing up,

HENSEL'S LEMMA. Suppose $(K, v), V K N \neq$, is a complete valued field. Then, for any $f \in O_{v}[x]$ and $a \in O_{v}$ such that $v(f(a))>2 v\left(f^{\prime}(a)\right)$, there is $\alpha \in O_{v}$ such that $v(\alpha-a)>v\left(f^{\prime}(a)\right)$ \& $f(\alpha)=0$.

Def. if (k, v) any rance group? sabisfles 且, we call io henselian. What we have gust moved is, hence, the statement complete valued fields are hewsehon.

s equivalent forms of hensehoriby

LEMMA. ($k, v)$ is hensehau \Leftrightarrow for each $f \in O_{v}[x]$ and $a \in O_{v}$, if $v(f(a))>0$ and $v\left(f^{\prime}(a)\right)=0$, then there is $b \in O_{v}$ such that $f(b)=0$ and $v(b-a)>0$.

PROOF. \Leftrightarrow if $v\left(f^{\prime}(a)\right)=0$, then

$$
v(f(a))>0=2 v\left(f^{\prime}(a)\right) .
$$

(\Leftrightarrow) using Taylor expausion,

$$
f(a-x)=f(a)-f^{\prime}(a) x+x^{2} g(a, x)
$$

for $g(Y, X) \in Q_{v}[Y, X]$. Let $Y=\frac{X}{f^{\prime}(a)}$, then

$$
h(Y):=\frac{f\left(a-f^{\prime}(a) Y\right)}{f^{\prime}(a)^{2}}=\frac{f(a)}{f^{\prime}(a)^{2}}-Y+g\left(a, f^{\prime}(a) Y\right) Y^{2}
$$

satisfies $\bar{h}(\bar{o})=\overline{0}, \overline{h^{\prime}}(\overline{0})=-\overline{1}$. Let $h(\alpha)=0$, so $b=a-f^{\prime}(a) \alpha \in O_{V}$ is a root of f as requested.

THEOREM. (K, V) valued field, TFAE
i.) v extends unquely to any fimble externow to k,
ii.) $\left(K_{1} v\right)$ is nemetian,
iii.) every polynomial of the fora

$$
x^{n}+x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{0}
$$

with $a_{i} \in m_{v}, 0 \leqslant i \leqslant n-2$, has a zero in k.
PROOF. We prove $(\mathrm{i}) \Rightarrow$ (ii) \Rightarrow (iii) \Rightarrow (i).
($i \Rightarrow$ ii). Take $f \in O_{v}[x], a \in o_{v}$ with $\bar{f}(\bar{a})=\overline{0}, \bar{f}^{\prime}(\bar{a}) \neq \overline{0}$. Upon replacing f by one of its ineducible components, we may assume it is irreducible.
Further, we may assume it is separable; if $f=g\left(x^{p}\right)$, then $\bar{f}^{\prime} \equiv 0$, a contradiction.
Let L be the splitting field of f over K. Write

$$
f=c \prod_{i=0}^{n}\left(x-a_{i}\right)
$$

for some $c \in O_{v}^{x}$, say with $\bar{a}_{1}=\bar{a}$. Let w be the nuque extennou of v to L. If $n=1$, we ore done; no assume $n>1$. Let $\sigma \in G i l(L \mathbb{K})$ satisfy $\sigma\left(a_{1}\right)=a_{2}$. Then σ induces $\bar{\sigma} \in G a l(L w \mid K v)$ (sure w is the unique extension!) with

$$
\bar{a}_{2}=\bar{\sigma}\left(\overline{a_{1}}\right)=\bar{b}(\bar{a})=\bar{a}=\overline{a_{1}},
$$

but then $\bar{a}=\overline{a_{1}}=\overline{a_{2}}$ is not a rimple sob. y (ii \Rightarrow iii). We have

$$
\bar{f}=(x+1) x^{n-1}
$$

and thus -1 is a simple zero.
(ii $\Rightarrow i$). Assume nob, so there is $K \leqslant N$ fimble and v has finely many distinct extensions to N, say $V_{1}, \ldots V_{n}$. Let

$$
D=\left\{\sigma \in \operatorname{Gal}(N / k): \sigma\left(U_{v_{1}}\right)={\left.v_{v_{1}}\right\} \leqslant \operatorname{Gal}(N / K), ~(N)}\right.
$$

and note that $D \leqslant \operatorname{Gal}(N / K)$ (because of the Conjugation Theorem!). Then $L=F i x(D) \nRightarrow K$ is a proper extension. Call $V_{i}^{\prime}=L \cap{O_{V_{i}}}^{\supsetneq}$. Note that, by Conjugation, O_{1}^{\prime} has a unique prolongation to L. Note
that then if $\sigma_{1} \notin D, \quad O_{i}^{\prime}=O_{v_{1}} \cap L=\sigma_{i}\left(O_{v_{1}}\right) \cap L \neq O_{1}$. We caa then apply Weak Approximation aud find $\beta \in R=\theta_{1}^{\prime} \cap \ldots \cap \theta_{n}^{\prime} \subseteq L$ such that $\beta-1 \in m_{1}^{\prime}, \beta \in m_{i}^{\prime}$ for $i>1$. As $0_{1}^{\prime} \neq 0_{i}^{\prime}, \beta \notin K$: let f be its mammal polynomial over k, say

$$
f(x)=x^{k}+a_{k-1} x^{k-1}+\cdots+a_{0}
$$

for nome $a_{j} \in K$
Say $\beta=\beta_{1}, \ldots \beta_{k}$ ere the Conjugates of β in N. For $\sigma \in G \backslash D$, $\beta \in \sigma\left(m_{1}\right)$ by definition, so $\sigma(\beta) \in m_{1}$ for all $\sigma \in G \cdot D$. As the $\beta_{2}, \ldots \beta_{k}$ are exactly the $\sigma\left(\beta_{1}\right)$ for $\sigma \in G \cdot D_{1} \beta_{i} \in M_{1}$ for all i.
And now

$$
f(x)=\pi(x-\beta i)
$$

satrefies

$$
a_{k-1}=-\left(\beta_{1}+\ldots+\beta_{k}\right) \in\left(1+m_{1}\right) \cap k=1+m_{v}
$$

aud $a_{1} \in m_{1} \cap k=m_{v}$.
Thur

$$
g(x)=\frac{f\left(a_{k-1} x\right)}{\left(a_{k-1}\right)^{k}}=x^{k}+x^{k-1}+\tilde{a}_{k-2} x^{k-2}+\cdots+\tilde{a}_{0} \in O_{v}[x]
$$

satisfies the assumptions of (iii). However, f is ineducable, no g cannot have a zero! y

