Stettin, 23.03.2022

GOAL/HOPE: understand the model theory and algebra of unrawified henselian valued fields, envicted with a lift of the Robenius from the (imperfect) residue field.

In the perfect case, BMS prove an AKE-type principle for a class of structures of the form

 (k, v, σ) which includes the case k = W(kv), kv perfect of chor. p.70, and T lifts $\overline{T}: kv \xrightarrow{} kv$ the Frobenius. A key example: $kv = \overline{T_{p}}^{alg}$

The perult relies heavily on two steps recall the coarsening diagram for henselian unrawified valued fields, $v_0: K \rightarrow \Gamma/\Delta, \Delta \leq \Gamma$ the convex subgroup gen. by v(p) $k \longrightarrow kv_0 \longrightarrow kv$ If you want to nove Ake in the pure case, Starting out with $(K_1v), (L,w), \forall K \equiv wL, kv \equiv Lw$ under enough saturation you may assume $\forall K \cong WL, kv \cong Lw$ and then it's a "lifting game" $(K_1v_0) \longrightarrow kv_0 \longrightarrow kv$ $\|I = \frac{c}{2} = \frac{1}{2}$

$$(L, W_0) \longrightarrow W_0 \longrightarrow W_0$$

is achieved with With vectors (for perfect residue)
 and Cohen rings (for imperfect residue - Anscombe, Jahnke)
 is achieved through the classical (Q, D) AKE

In the envicted case, the situation is situilar: kv, lw perfect $\Rightarrow kv_0 \cong W(kv), lw_0 \cong W(lw)$ $(k,v_0,T) \longrightarrow lkv_0, T_0) \longrightarrow (kv,T)$ $111 \longrightarrow 12 \longrightarrow 12$ $(L,w_0,T) \longrightarrow (lw_0,T_0) \longrightarrow (lw,T)$

is the structule theory of Witz vectors
 Requires a (0,0) argument, that BMS give through
 Kaplansky through

what about implifect ky and Lw?
Both 10 p 12, as they are, fail:
· With rectors aren't useful for inuperfect rendul,
· J- Kaplancky hor non-surjective maps is unclear.
Our hope: supplement () with Cohen rings (Anscombe -
let's focus on (). Jahnbe?
Obstacles: > lifts of the fusterius are not unique
► Cohen rings are not rigid (in other words, they are
unique up to Non-unique (350)
~ there is much more data to keep stack of!
(due to p-bases & representatives)

→ we hows on one type of lift. Let C[k] Cohen over k.
Fix
$$\overline{\beta} \leq kV$$
 a p-basis and s: $\overline{\beta} \rightarrow C[k]$ a choice of representatives.
One can embed C[k] inside W[k^{perf}] using S and $\overline{\beta}$. There is
a unique (!) lift of the Furtherius to W[k^{perf}].
Let $\overline{\phi}$: C[k] → C[k] be the restriction of the Furtherius to C[k].
Can ϕ naive of type (S $\overline{\beta}$). Eq., $\phi(s(b)) = s(b)^{p}$ $\forall b \in \overline{\beta}$.
(Being "or some type" is hirst order in finite deg. of impf.)
 $(k, v, \phi) \longrightarrow (kv_{0}, \overline{v}, \phi_{0}) \longrightarrow (kv, \overline{\phi})$
of some type (\Rightarrow also of home type)[2 [2
 $(L_{1}w, \psi) \longrightarrow (LW_{0}, \overline{v}, \phi_{0}) \cong (LW_{0}, \overline{w}, \psi_{0})$.