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Prologue

Some humans would do anything to see if it was possible to

do it. If you put a large switch in some cave somewhere, with

a sign on it saying

“End-of-the-World Switch.

PLEASE DO NOT TOUCH”

the paint wouldn’t even have time to dry.

Terry Pratchett, Thief of Time

IT would be hard to introduce this story, to open the curtains on this thesis,

without some context on what the world was like throughout its birth. I would

like to paint some details that might, or might not, justify some choices. The

topic was chosen, among a list of many, somewhere in Central Italy, close to

the sea, during a time where the pandemic seemed somehow more distant,

less frightful; there were plans, at that point, of moving across the continent for

some months. These plans eventually – but ever so slowly – came to a natural

death as the months progressed and the pandemic worsened. Of those five

months, only ten days survived. I will have to find a good way to add “Erasmus

program” to my CV, when the most I have travelled while writing this thesis

was from my bedroom to my kitchen, and back. Despite all of the difficulties of

writing a thesis from abroad, it was nevertheless a vivid experience – beautiful,

frustrating and educational. There are many people who have to be thanked

for making the six-ish months of this thesis as filled with stories to be told as

they were, but that will have to wait until the Epilogue; for now, I have spoken

enough and it is high time I leave this stage to the only worthy actor of this

ensemble: the story itself.

THERE are several possible ways to start this story, all of which are necessarily

apocryphal. What are “étale methods”, and why do we care? Or, more precisely,

why do I care? Here is one possible explanation: in 1989, Van den Dries showed

in [Dri] that definable sets, in henselian valued fields of characteristic zero, ad-

mit a particularly nice description, that somehow resembles the one available

for definable sets in algebraically closed fields. In particular,

THEOREM. — If k is a henselian valued field of characteristic zero, every definable

set can be written as a finite union of valuation open subsets of Zariski closed

sets.
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chapter 1

A result like this one begs the question – can something similar be said

about other classes of fields? Can one find a unifying framework encompassing

all fields (possibly with some further hypotheses) whose definable sets can

be decomposed this way? The first step is, necessarily, finding an adequate

notion of “open” – such a notion should, then, survive a reality check: it should

coincide with available, classical notions of openness, like Zariski open or

valuation open, in all natural cases.

IN come étale methods. Or more specifically, the étale-open topology, which

is a candidate – introduced in [Joh+20] – for the notion of “openness” that was

needed. One might think of it as a way of assigning, uniformly, a topology to all

k-varieties over a certain field k; and indeed, it is the data of a covariant functor

Ek : (Vark ) → (Top) that carries over geometrical (and algebraic) information

from the k-varieties to certain topological spaces obtained from their k-points.

THE étale-open topology is two-faced – on the one hand, Ek acts as a dictio-

nary between algebraic properties of k and topological properties of Ek . As an

example, the field k is not separably closed if and only if Ek is Hausdorff on

every quasi-projective k-variety. On the other, it generalizes several well-known

topologies: if k is separably closed, for example, Ek is just the Zariski topology;

if k is real closed, it is the order topology; if it is henselian, it is the valuation

topology.

BOTH of these faces come into play when the étale-open topology is applied

to obtain results on the algebraic properties of certain model-theoretically

interesting fields. In chapter 3 and 4, two of these kind of applications are

explored – under the assumption of largeness, without which the étale-open

topology is just the discrete topology: a specific instance of the Stable Fields

Conjecture is proved, namely that stable large fields are separably closed; and

on a similar vein, in the following chapter, simple large fields are shown to be

bounded.

FINALLY, chapter 5 goes back to the beginning of our story. Now that we

have a notion of “openness” at hand, we can isolate the class of fields where

definable sets admit a nice topological decomposition, namely éz (pronounced

like “easy”) fields. In particular, two examples of éz fields are explored in de-

tail: henselian valued fields of characteristic zero, and algebraically maximal

Kaplansky valued fields.

o There are several places where there might be useful remarks, or historical

notes, that would break down the flow of the exposition. In that case, I will put

them in small, grey boxes, like

* This one.
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chapter 1

1.1 What to expect
THERE are several choices that have been made while writing this thesis.

The first, and biggest, one was to put the emphasis on the exposition and the

ideas, rather than all the technical details. For this reason, there will be several

facts without proofs – the idea being that those proofs wouldn’t contribute to

the final understanding of the content. In particular, several proofs from the

sections on stability and simplicity have only been sketched, either because

they weren’t particularly interesting or because the machinery involved would

take too long to be introduced, distracting the reader from the final goal. At any

rate, references are always given, so that those who feel like they want more

details can find them (and possibly explain them to me). The moral of this

story is twofold: one, hopefully nobody will try to learn stability or simplicity

from my thesis; two, trusting your chaperone on this journey – that is, me – is a

necessary act of faith, possibly one that won’t leave you (too) disappointed.

1.2 Notation
N the natural numbers, including zero (alternatively, ω)

K F the compositum of the fields K and F (inside a common extension)

∼=k isomorphism of fields over a common subfield k

K h the henselianization of the (valued) field K

K alg the algebraic closure of the field K

K sep the separable closure of the field K

K ((tΓ)) the field of Hahn series with coefficients in K and exponents in the group

Γ; if Γ is omitted, assume Γ=Z

K I /U the ultrapower of the field K over the ultrafilter U on the set I

Lring the language of rings {0,1,+, · }

3





Étale methods

La luna geme sui fondali del mare,

o Dio quanta morta paura

di queste siepi terrene,

o quanti sguardi attoniti

che salgono dal buio a ghermirti nell’anima ferita.

Alda Merini, Canto alla luna

2.1. Large fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Étale maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. The étale-open topology . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4. Systems of topologies . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5. Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

EVERY story begins with a promise. I must, therefore, proceed to promise

you something, a reward that will make working through these pages worth

the effort. The starting point is that mathematics, as it is taught and done, is

effectively an oscillating Babel tower, a place where dozens of different lan-

guages are spoken, all at the same time, all at the maximum volume possible.

Exploring such a labyrinth of voices, where new sounds and words are created

all the time, is a struggle that is ever so slightly reduced by the introduction of

dictionaries and translations. The first ones are taught in high school: lines in

the plane correspond to linear equations. Parabolas to quadratic equations.

Jumping ahead, algebraic geometry works as a translation paradigm between

algebra and geometry. Many other similar dictionaries have been, and are

being, discovered throughout mathematics.

THIS is my promise to anyone reading this introduction: in these pages, you

will find a new dictionary, a bridge between vastly different worlds. The étale-

open topology will allow communication between people from the topological

mountains and inhabitants of the algebraic fjords.

I can only hope I can maintain this promise.

2.1 Large fields
BEFORE moving on to the central topic of this chapter, we need a short detour

into the theory of large fields. As introduced by Pop in 1996, they are a class

of fields that exhibit interesting behaviours from many points of view – model
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chapter 2

theoretic, Galois theoretic, diophantine. The definition somehow aims at

capturing this variety of phenomena, isolating fields that are rich enough for

fruitful interactions between algebra and geometry to happen. By a k-curve we

will mean a reduced k-scheme of finite type and dimension 1.

Definition 2.1.1. — A field k is said to be large if every absolutely irreducible

k-curve C with one smooth k-rational point has infinitely many k-rational

points.

MANY fields that can be found in nature end up being large. For example,

algebraically closed fields, real closed fields, PAC (and hence pseudofinite)

fields, henselian valued fields are all large. On the contrary, as a consequence

of the Mordell conjectures, number fields – including Q – are not large. This

often leads to calling them “anti-Mordellic.”

* It seems like “anti-Mordellic” is also a clever joke in French, where bordélique means

“messy” in slang.

THERE are several fields which are not known to be large, nor there is any hint

towards their largeness (or non-largeness). Among them, the most notable is

arguablyQab, which is the largest abelian extension ofQ – by Kronecker-Weber,

this is just Q adjoint with all primitive roots of unity. Despite this concrete

description, a proof of its largeness – or non-largeness – is still elusive, and

in fact it would imply several interesting conjectures in Galois theory, see for

example [BF11].

THE definition of large was given in terms of curves, but there is really no

need for that; through a smooth k-rational point of any k-variety one can find

many curves, all of which will have infinitely many k-points, and thus one can

actually prove that the definition of large is equivalent to a higher dimensional

version of it.

* This is, at least philosophically, a consequence of Bertini’s theorem.

PROPOSITION 2.1.2. — The following are equivalent:

1. k is large,

2. every absolutely irreducible k-variety V of positive dimension with a

smooth k-rational point has infinitely many k-rational points,

3. if V is an absolutely irreducible k-variety of positive dimension with a

smooth k-point, then V (k) is Zariski dense in V .

BEFORE moving on, a small remark on the elementarity of largeness. Elemen-

tarity is more or less easily achievable once we can restrict the set of curves we

have to check. In particular, we can restrict to checking planar curves, thanks

to this lemma (see [Pop13], Fact/Notations I).

6



chapter 2

LEMMA 2.1.3. — Suppose X is an irreducible k-variety of dimension d and p

is a smooth point of X . Then there is an hypersurface X0 =V ( f ) ⊆Ad+1 and a

birational equivalence ϕ : X 99K X0 defined at p and such that ϕ(p) = (0, . . .0).

The polynomial f can be taken of the form f = Xd+1+ f̂ , where f̂ ∈ k[X1, . . . Xd+1]

has vanishing terms of degree less than two. Moreover, X (k) ⊆ X is Zariski dense

if and only if X0(k) ⊆ X is Zariski dense.

AS a consequence, we can prove that

COROLLARY 2.1.4. — The class of large fields is elementary in the language of

rings.

DENOTE by Xsm the set of smooth points of X .

Proof. We shall see that k is large if and only if, for every irreducible polynomial

f = X2 +∑
i+ j>1 ai j X i

1 X j
2 and every finite S ⊆ k, there is (a,b) ∈ k2 such that

f (a,b) = 0 and a ∉ S. The latter is an elementary property. Assume k is large.

Then C = V ( f ) ⊂ A2 has (0,0) as a smooth point. Either f = X2, or f is not

constant in X1; in both cases, the condition is satisfied. Now assume k satisfies

the latter condition. Let C be a k-curve with a smooth point p ∈C (k). We can,

by the lemma just mentioned, choose C0 birationally equivalent to C via ϕ,

C0 =V ( f ) where f has the form

f = X2 +
∑

i+ j>1
ai j X i

1 X j
2 .

Let U ⊆ C and U0 ⊆ C0 be the Zariski open subsets isomorphic via ϕ: since

p ∈U , we can assume U ⊆Csm and thus U0 ⊆ (C0)sm. Further, C \U and C0 \U0

are finite, hence if C0(k) is infinite, C (k) is also infinite. ■

2.1.1 Largeness and existential closure

ONE further source of interest over large fields is the fact that they can be

isolated using purely model theoretical concepts. For starters, we need to recall

some notation.

Definition 2.1.5. — Let M and N be two structures in the same language L,

with M ⊆ N . We say that M is existentially closed in N , and write M ≺∃ N , if

for every quantifier-free L-formula ϕ(x), if N Í∃xϕ(x) then M Í∃xϕ(x).

WE now focus on fields. Existential closure satisfies important properties. In

particular, it is a transitive and hereditary relation.

THEOREM 2.1.6. — Suppose k ⊆ K ⊆ L is a tower of field extensions. On the one

hand, if k ≺∃ K ≺∃ L, then k ≺∃ L. On the other hand, if k ≺∃ L, then k ≺∃ K .

MOREOVER, existential closure can be characterized through ultrapowers.

7
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THEOREM 2.1.7. — Suppose k I /U is an |K |-saturated ultrapower of k. Then

k ≺∃ K if and only if there exists a field embedding K ⊆ k I /U over k.

IN the class of fields, we are now ready to prove that large fields are exactly

those that are existentially closed in their fields of Laurent series. We will follow

chapter 5 of [Jar11] for this proof.

THEOREM 2.1.8. — k is large if and only if k ≺∃ k((t )).

WE prove this through several lemmas. Here is the strategy.

1. We prove that if k is large, then function fields of one variable over k with

one k-rational place have infinitely many such places.

2. Using this, we prove that k is existentially closed in the henselianization

of k(t ).

3. Since k(t )h is existentially closed in its completion, which we can assume

is k((t )), we have showed one implication.

4. Finally, if we assume that k is existentially closed in k((t)), we prove

directly that it is large (using the henselianity of the t-adic valuation).

BEFORE moving forward with the proof of 2.1.8, we recall some definitions

and facts from the theory of function fields of one variable. We draw heavily

from Chapter 3 of [FJ08].

Definition 2.1.9. — If k is a field, a function field of one variable over k is a

finitely generated regular extension F with transcendence degree 1. A model

of the field extension k ⊆ F is a k-curve C such that k(C ) ∼=k F .

IF F is a function field of one variable, then there is t ∈ F which is trascenden-

tal over k and such that k(t ) ⊆ F is finite and separable.

LEMMA 2.1.10. — Suppose k is large, then every function field of one variable

over k with a k-rational place1 has infinitely many k-rational places.

Proof. By Lemma 5.1.4 in [Jar11], we can find an affine model C for k ⊆ F that

has a smooth k-rational point p. By largeness, C has infinitely many smooth

k-rational points. Each one of them gives, again by Lemma 5.1.4, a k-rational

place on F (which is precisely the one corresponding to the valuation ring OC ,q

for every k-rational point q). ■
THERE is a natural valuation on k(t), namely the discrete one that is trivial

on k and assigns value 1 to t . We call this the t-adic valuation, and will always

assume it is the valuation we consider on k(t). Similarly for k((t)), where the

t-adic valuation is the canonical henselian valuation. We shall denote by k(t )h

the henselianization of k(t ), which we see as a subfield of k((t )).

1A place is called k-rational if the residue field is exactly k.

8
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LEMMA 2.1.11. — Suppose k is large, then k ≺∃ k(t )h .

Proof. Let x = (x1, . . . xn) be a point with coordinates in k(t )h . Let F = k(x): if x

were algebraic over k, then because k is algebraically closed in k((t)) ⊇ k(t)h

we must have x ∈ kn , in which case we are done, since x satisfies the same

equations as itself. Otherwise, the transcendence degree of k ⊆ F is 1. Let

ϕ0 be the restriction to F of the place corresponding to the t-adic valuation

on k((t)): it is k-rational and so, by hypothesis, k ⊆ F admits infinitely many

k-rational places. Apart from a finite set of them, they will all be finite at x, so

the specializations will stay in kn , hence k ≺∃ k(t )h . ■
WE can finally prove 2.1.8.

Proof. In one direction, since k ≺∃ k(t )h and k(t )h ≺∃ k((t )), then k ≺∃ k((t )).

* The fact that k(t)h ≺∃ k((t)) is an instance of the fact that the henselianization of

a function field in one variable is existentially closed in its completion, which we can

assume is k((t )) in this case. See Lemma 5.2.7 in [Jar11].

In the other direction, suppose f ∈ k[x, y] is an absolutely irreducible poly-

nomial and (a,b) ∈ k2 is a point such that f (a,b) = 0 and ∂ f
∂y (a,b) 6= 0. We

prove that the k-variety A = V ( f ) has infinitely many k-points, thus proving

that k is large (see the proof of 2.1.4). Let v be the t-adic valuation on k((t))

and suppose (a1,b1), . . . (an ,bn) ∈ A. Note that, for a choice of a′ in k((t )) such

that a′ 6= a1, . . . an such that v(a′−a) is big enough, v
(
∂ f
∂y (a′,b)

)
= v

(
∂ f
∂y (a,b)

)
is finite and

v( f (a′,b)) = v( f (a′,b)− f (a,b)) > 2v

(
∂ f

∂y
(a′,b)

)
and so, by henselianity, we can find b′ ∈ k((t )) such that f (a′,b′) = 0. Now since

k is existentially closed in k((t )), we can find points an+1 and bn+1 in k that kill

f , and an+1 6= a1, . . . an . This shows that A contains a new point, (an+1,bn+1).

Since this can be iterated, A is infinite. ■

2.1.2 Fraction fields of henselian domains

BEFORE moving on to étale methods, we stop for a moment to examine

thoroughly one of the examples of large fields mentioned at the beginning.

THE main source for this section will be [Pop10]. Instead of looking precisely

at henselian valued fields, we can check that something slightly more general

is large.

Definition 2.1.12. — A ring R will be called henselian with respect to a, where

a is some ideal, if the following holds: if a+a ∈ R/a is a root of some polynomial

f (X ) ∈ R/a[X ] such that f
′
(a +a) ∈ (R/a)×, then there exists b ∈ R such that

f (b) = 0 and b +a= a +a.

9
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IN particular, if (k, v) is a henselian valued field, thenOv withmv is a henselian

ring.

THEOREM 2.1.13. — If R is a domain which is henselian with respect to some

ideal a 6= (0), then k = Quot(R) is a large field.

Proof. Suppose C is an absolutely irreducible k-curve and p ∈C (k) is a smooth

k-rational point. We can assume, up to birational equivalence, that C =V ( f ) ,→
A2

k , p is identified with the origin and the polynomial has the form f (X ,Y ) =
Y + f̂ (X ,Y ), where f̂ has vanishing terms in degree less than two. After clearing

denominators, we can assume f̂ (X ,Y ) ∈ R[X ,Y ], so that we have a plane curve

C̃ := SpecR[X ,Y ]/( f ) ⊆A2
R .

For every a ∈ a, set fa(Y ) = f (a,Y ). Then fa(0) = f (a,0) ∈ a and f ′
a(0) ∈ 1+a,

so 0+a is a simple root of f a ∈ (R/a)[Y ]. By henselianity, there exists an element

b = b(a) ∈ a such that fa(b) = f (a,b) = 0, i.e. (a,b) ∈ C̃ (R) ⊆C (k). This defines

an injection a ,→C (k) given by a 7→ (a,b(a)), hence |C (k)| ≥ |a| ≥ω. ■

2.2 Étale maps
ÉTALE maps will constitute the bread and butter of the techniques we will

use later on, as developed in [Joh+20]. There are several possible references for

étale maps and techniques, none of which are exactly what we need. Mostly,

we will refer to [Jon], which is an excellent reference but perhaps not the best

place to start learning étale methods from; Milne’s notes ([Mil13]) are written

in his well-known clear style, but cover mostly the classical case, while his 80s

textbook ([Mil80]) covers the general case; at any rate, one can find almost

anything in [Gro64b] (or the amazing community translation, [HK20]).

* According to Milne, the word “étale” is intended by Grothendieck in the way Hugo

uses it in “La mer était étale, mais le reflux commencait a se sentir”, i.e. to mean the sea

at high or low tide. His intuition was that étale maps were like the light of a full moon

on a sea at high tide: locally parallel, but not globally so.

THERE are several equivalent definitions of étale morphisms, none of them

particularly illuminating. I chose this one, because it is a good working defini-

tion, but it might not be the most popular.

Definition 2.2.1. — A morphism of schemes ϕ : X → Y is étale at p if it is

smooth of relative dimension 0 at p. A morphism of schemes X → Y is étale if

it is étale at every point.

THIS means that, for every point p ∈ X and affine open neighbourhood U ⊆ X

of p there is an affine open neighbourhood V = SpecR of ϕ(p) in Y such that

“ϕ|U 2 is like (the map induced by) the map from a ring to a quotient of its ring

of polynomials”.

2Or, more precisely, ϕ|U∩ϕ−1(V ).

10
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IN other words, there is n ≥ 0 and polynomials f1, . . . fn ∈ R[x1, . . . xn] such

that U is isomorphic to an open subscheme W of

SpecR[x1, . . . xn]/( f1, . . . fn)

and the following diagram commutes,

U W SpecR[x1, . . . xn]/( f1, . . . fn)

V SpecR

ϕ|U

∼=

∼=

ρ|W ρ

where ρ is the map induced by the ring map

R → R[x1, . . . xn]/( f1, . . . fn)

and the Jacobian matrix
(
∂ fi
∂x j

)
i , j≤n

has rank n.

THE definition of étale is somewhat obscure. The intuition to keep in mind is

as follows: in differential geometry, one has the idea of “local diffeomorphism”,

meaning a map ϕ : M → N between smooth manifolds such that, when one

takes a neighbourhood U ⊂ M of p ∈ M and a neighbourhood V ⊂ N of ϕ(p) ∈
N such that ϕ[U ] ⊆V , ϕ|U : U →V is a diffeomorphism onto its image. This,

in particular, implies that ϕ∗,p : Tp M
∼−→ Tϕ(p)N . The viceversa is precisely the

implicit function theorem – or rather, the local inverse theorem. Suppose now

that you are given “classical” affine varieties V ,W ⊆An , that is good old sets of

zeroes of polynomials over an algebraically closed field k. Given a regular map

ϕ : V → W , one can consider its differential ϕ∗,p : TpV → Tϕ(p)W at a point

p ∈V and wonder if, by imposing that ϕ∗,p be an isomorphism, it is possible

to recover an implicit function theorem. That does not work – the Zariski

topology is too coarse for our dreams. Nevertheless, étale maps provide a good

counterpart to covering maps, to the extent that one can build a cohomology

theory out of them.

WE now explore some of the main properties we will need.

LEMMA 2.2.2. — Open immersions are étale.

Proof. Suppose ι : (X ,OX ) → (Y ,OY ) is an open immersion. We can, modulo

moving to open subschemes, assume X ∼= SpecR ∼= ι(X ). Then we can take

W = SpecR[x1, . . . xn]/(x1, . . . xn)

so that the induced map ρ restricts precisely to ι. ■

11
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LEMMA 2.2.3. — The composition and base change of étale morphisms is still

étale.

Proof. Showing that the composition of étale morphisms is étale reduces to

showing the following algebraic fact: suppose you have a sequence of rings

A → B →C such that

B = A[x1, . . . xn]

( f1, . . . fn)

with det
(
∂ fi
∂x j

)
i , j≤n

non-zero and

C = B [y1, . . . ym]

(g1, . . . gm)

where det
(
∂gi
∂y j

)
i , j≤m

is non-zero. Then we can rewrite C as a quotient of a

polynomial ring in A for an ideal of polynomials whose Jacobian has the right

rank. To do so, consider that to each gi ∈ B [y1, . . . ym] is associated a g ′
i ∈

A[x1, . . . xn , y1, . . . ym], which is given by considering representatives for each of

the coefficients of gi . Then

C ∼= A[x1, . . . xn , y1, . . . ym]

( f1, . . . fn , g ′
1, . . . g ′

m)

and the combined Jacobian of the fi s and g j s has precisely rank n +m.

Consider now an étale map ϕ : X → Y of Z -schemes. If Z ′ → Z is another

Z -scheme, then we get a new map

ϕZ ′ = f ×Z idZ ′ : X ×Z Z ′ → Y ×Z Z ′.

By definition, there is an affine open U ⊆ X that is isomorphic to an open

subscheme W ⊆ SpecR[x1, . . . xn]/( f1, . . . fn) and an affine open V = SpecR ⊆
Y such that ϕ|U is isomorphic to the (restriction to W of the) induced map

between SpecR[x1, . . . xn]/( f1, . . . fn) and SpecR . Modulo moving to affine open

subschemes, we can assume Z ′ = SpecS′ and Z = SpecS. Take U ′ =U ×S Z ′

and V =V ×S Z ′, so that

U ′ ∼=W ×S Z ′ ⊆ Spec
R[x1, . . . xn]

( f1, . . . fn)
⊗S S′ ∼= Spec(R ⊗S S′)[x1, . . . xn]/( f1, . . . fn)

where fi is obtained from fi by tensoring each coefficient with 1. Moreover,

V ′ ∼= SpecR ⊗S S′. The Jacobian associated to f1, . . . fn is obtained from the

Jacobian associated to f1, . . . fn by tensoring each element with 1, so it still has

rank n and the map ϕZ ′ is étale. ■

12
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* This proof is much more powerful, because it allows us to show that if you compose

two smooth maps, of relative dimension r and s, you find a smooth map of relative

dimension r + s. In this case, we are working with 0+0 = 0.

MOREOVER, étale maps provide a powerful intuition for the local properties

of smooth morphisms. In particular,

LEMMA 2.2.4. — Suppose ϕ : X → Y is a morphism of k-varieties and p is a

point in X . If ϕ is smooth at p, then for every affine open neighbourhood of

ϕ(p), V = SpecR ⊆ Y , there is an affine open neighbourhood of p, U ⊆ X , and

an integer d ≥ 0 such that

X U Ad
R

Y V

ϕ|Uϕ

π

commutes, where π is étale.

Proof. Suppose ϕ is smooth of relative dimension r . Then we have, by defini-

tion, the following diagram

X W SpecR[x1, . . . xn+r ]/( f1, . . . fn) Ar
R

Y V SpecR

ϕ ϕ|W
∼=

ρ

where the map ρ is induced by quotient projection. Notice that

1. the map U →W is an isomorphism, hence étale,

2. the map W → SpecR[x1, . . . xn+r ]/( f1, . . . fr ) is an open immersion, hence

étale,

so we only need to show that ρ is étale. Notice that ρ is induced by the ring

map

R[x1, . . . xr ] → R[x1, . . . xr ][xr+1, . . . xn+r ]

( f1, . . . fn)

and the Jacobian (∂ fi /∂xr+ j )i , j≤r has rank r , so ρ is étale. ■

* Étale morphisms satisfy what Ravi Vakil, in [Vak], defines as the properties of “rea-

sonable” classes of morphisms. They are satisfied by étale morphisms, and a fortiori

open immersions, and many other classes, and indeed a lot of the work done here

could be partially done with any class of morphisms satisfying these formal properties.
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IF, in particular, X is a curve, i.e. it is irreducible and it has dimension

1, Y = Speck and ϕ is the structure morphism X → Speck, we get an étale

morphism π : U →A1
k . We call this a local coordinate at p.

IN the very specific case ofAn
k = Speck[x1, . . . xn], we get a very useful crite-

rion. Suppose you have a map of k-varieties, ϕ :An
k →An

k , induced by some

ψ : k[x1, . . . xn] → k[y1, . . . yn]. Let fi (y1, . . . yn) :=ψ(xi ) for i = 1, . . .n. Then we

can rewrite the mapAn
k →An

k as a map

Speck[x, y]/(x1 − f1(y), . . . xn − fn(y)) → Speck[x1, . . . xn]. (2.1)

THIS allows to turn the intuition that an invertible Jacobian makes a map a

local isomorphism – i.e., étale – into a proper criterion. Notice, however, that

étale doesn’t really mean local isomorphism, not even in the modern case. The

Zariski topology remains too coarse, and one has to turn to the so-called “étale

topology” (which is not the étale-open topology, or not even a topology in a

classical sense, for that matter).

PROPOSITION 2.2.5. — Let ϕ :An
k →An

k be a map of k-varieties. Suppose that,

in the notation of 2.1,
(
∂ fi
∂y j

)
i , j≤n

is invertible at p. Then ϕ is étale at p.

Proof. The map ϕ can be written locally precisely as

Speck[x][y1, . . . yn]/(x1 − f1(y), . . . yn − fn(y)) → Speck[x1, . . . xn].

Let hi (x, y) = xi− fi (y). Then the Jacobian
(
∂hi
∂y j

)
i , j≤n

=−
(
∂ fi
∂y j

)
i , j≤n

has rank n in

a neighbourhood of p (since the determinant is a polynomial with coefficients

in k, the locus on which it is not zero is open). ■

2.3 The étale-open topology
AS mentioned in the introduction, we will now construct a dictionary be-

tween topological and algebraic information. We will consider a field k, and

this dictionary will be provided by the data of a certain topology on each k-

variety. If we think of étale maps as coverings of varieties, we are essentially

building each variety with bricks that look like copies of other varieties (of the

same dimension, at least on an irreducible component).

FOR a fixed field k and a k-variety V (not necessarily reduced), an étale image

in X (k) is a set of the form ϕ(V (k)) for some étale morphism of k-varieties

ϕ : X →V .

* This “not necessarily reduced” is precisely what forces us to use schemes instead

of algebraic sets. More specifically, we shall look at fibered products, that can – and

usually do – end up being non-reduced.

14
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LEMMA 2.3.1. — The collection of étale images in V (k) contains every Zariski

open subset of V (k) and it is closed under finite unions and intersections.

Proof. Suppose U ⊆ V (k) is Zariski open: then, there is an open subvariety

W ⊆V such that W (k) =U . Since the immersion ι : W →V is étale, U = ι(W (k))

is an étale image in V (k). Suppose now U1 = f1(W1(k)) and U2 = f2(W2(k)) are

two different étale images in V (k). Then the canonical map h : W1 ×V W2 →V ,

respectively g : W1 tW2 → V , is étale and has image U1 ∩U2, respectively

U1 ∪U2. ■
IN particular,

COROLLARY 2.3.2. — The collection of étale images is the basis for a topology on

V (k).

CALL this topology the étale-open topology on V (k) and denote it by Ek (V ).

The following results will show that the assignment

V 7→ (V (k),Ek (V )),

(ϕ : V →W ) 7→ (ϕ : V (k) →W (k))

determines a functor (Vark ) → (Top) that carries over some of the geometrical

information of V . It will be, in particular, a system of topologies – they will

be introduced in 2.4, but for now know that “carries over some geometrical

information” means that we want our functor to

1. transform open immersions in (topological) open embeddings,

2. transform closed immersions in (topological) closed embeddings.

BUT first and foremost, we establish that it is actually a functor.

THEOREM 2.3.3. — For every ϕ : V →W , the induced map

ϕ : (V (k),Ek (V )) → (W (k),Ek (W ))

is continuous.

Proof. Something slightly stronger is true – suppose U ⊆W (k) is an étale image.

Then f −1(U ) ⊆V (k) is an étale image. In fact, let U = h(X (k)) and consider the

pullback square
V ×W X X

V W

h

f

ψ

y

where ψ is the base change of h and is thus étale. In particular, f −1(U ) =
ψ((V ×W X )(k)) is an étale image. ■
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NEXT, we prove something slightly more general than what we need – but

since open immersions are étale, this gives us item 1 of our list.

THEOREM 2.3.4. — If ϕ : V →W is étale, then

ϕ : (V (k),Ek (V )) → (W (k),Ek (W ))

is open.

Proof. If U = h(X (k)) ⊆V (k), thenϕ(U ) = ( f ◦h)(X (k)) is an étale image, hence

open. ■

SHOWING that closed immersions are sent to closed embeddings requires

some more work, and in particular the following lemma, which was taken from

[Gro64b]. It deploys the machinery of “standard smooth” maps, as introduced

in appendix A.2.1.

LEMMA 2.3.5. — If W is a k-variety, V is a closed subvariety of W , X is a k-

variety with an étale morphism g : X → V and p is a point of X , then there is

an open subvariety O of X that contains p and such that O is isomorphic, as

a V -scheme, to the fiber product Y ×W V where Y is a k-variety and the fiber

product is built using some étale morphism h : Y →W .

Proof. It is enough to produce a smooth h : Y → W 3. Since being smooth is

local on source and target, we can assume W = SpecS, V = SpecS0 where S0 =
S/I , X = SpecR0 where R0 = S0[T1, . . .Tn]/J , the latter because of étaleness (and,

a fortiori, smoothness) of the morphism X →V . In this setting, p ∈ SpecR0 is

a prime ideal associated to some q/J , where q ⊆ S0[T1, . . .Tn] is prime. Since

the associated ring map S0 → R0 = S0[T1, . . .Tn]/J is smooth, hence formally

smooth, there are finitely many f1, . . . fm ∈ J such that (J/J 2)q = 〈 f1, . . . fm〉, as a

S0[T1, . . .Tn]q -module, and det
(
∂ fi
∂T j

)
∉ q . We can, modulo moving to an affine

neighbourhood, assume that J = ( f1, . . . fm).

Consider now Q = S[T1, . . .Tn]. Then S0[T1, . . .Tn] =Q/L, and there is an as-

sociation that sends some prime ideal q0 ⊆Q to q , some polynomials g1, . . . gm

to f1, . . . fm , the ideal (g1, . . . gm) to J . Fix now a neighbourhood Y of

p ′ = q/(g1, . . . gm) ∈ SpecQ/(g1, . . . gm).

Since

Qp ′/(g1, . . . gm)p ′

is a formally smooth S-algebra, we get the desired morphism Y →W . ■
3This is because étale is equivalent to smooth and unramified, and once we have produced

Y → W such that O ∼=V Y ×W V , the fibers of O → V and Y → W are isomorphic; since
O → V is unramified, upon moving to a smaller Y if necessary we obtain that Y → W is
unramified as well. See [Gro64b], 18.1.1.
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THEOREM 2.3.6. — If ϕ : V →W is a closed immersion, then

ϕ : (V (k),Ek (V )) → (W (k),Ek (W ))

is a closed embedding.

Proof. Assume that V is actually a closed subvariety of W and f is the inclusion

map. Then V (k) ⊆W (k) is closed in the Zariski topology and thus in the étale-

open topology. Since f is continuous, the étale-open topology on V (k) is

finer than the subspace one; viceversa, if U ⊆V (k) is an étale image given by

g : X → V and p ∈ X is a (scheme-theoretic) point, then by the lemma there

is an open neighbourhood Op of p and an étale morphism hp : Yp →W such

that Op
∼= Yp ×W V as V -schemes. Let U ′

p = hp (Yp (k)): since the Op s cover

X , we can extract a finite subcover X =⋃
p∈I Op and thus U =⋃

p∈I U ′
p ∩V (k))

is a finite cover. Since
⋃

p∈I U ′
p is an étale image, this shows that U is also

open in the subspace topology. As a consequence, f is a closed (topological)

embedding. ■

2.4 Systems of topologies
MANY assignments of topologies to varieties over a fixed field k can naturally

be turned into functors. As a toy example, consider a k-variety V and the Zariski

topology on its set of k-points, V (k). This defines a functor Zk : (Vark ) → (Top);

moreover, by definition closed and open immersions are transformed into

closed and open embeddings of these topological spaces. A similar phe-

nomenon happens with the order topology on R, the valuation topology on any

valued field or the analytic topology on C. We distill this into a definition.

Definition 2.4.1. — A functor T : (Vark ) → (Top) that lifts the functor of points

is said to be a system of topologies if open (closed) immersions are sent to

open (closed) embeddings. If V is k-variety and T is a system of topologies,

then the associated topology on V (k) is called the T -topology and sometimes

denoted by T (V ) (even though technically T (V ) is the couple made up by V (k)

and its topology).

SINCE k-varieties are built up by affine k-varieties, the relevant information

is contained in what a system of topologies does on the subcategory (AffVark )

of (Vark ). In fact, suppose you are given a functor T from (AffVark ) to (Top)

that sends closed (open) immersions to closed (open) embeddings. Then,

THEOREM 2.4.2. — There is a unique system of topologies T ′ : (Vark ) → (Top)

such that, for every affine k-variety V , the T -topology on V (k) and the T ′-
topology on V (k) coincide.
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Proof. Pick any k-variety V and cover

V = ⋃
i∈I

Vi

by affine open subvarieties. Declare that U ⊆V (k) is open in the T ′-topology if

and only if U ∩Vi (k) is open in the T -topology on Vi for every i ∈ I . This gives a

topology on V (k) that, a priori, depends on the choice of the cover. However, if

V = ⋃
j∈J

V ′
j

is another cover and denote by T ′′ the topology on V (k) defined by this cover.

We need to show that T ′ and T ′′ agree on V (k): for each i , j , define

Oi , j :=Vi ∩V ′
j

so that Oi , j is affine open in V (to see that, take the fiber product of the spectra

that witness that Vi and V ′
j are affine open). Then, for any U ⊆V (k), U ∩Vi (k)

is open for T (Vi ) for all i if and only if U ∩Oi , j (k) is open for T (Oi , j ) for all i , j

if and only if U ∩V ′
j (k) is open for T (V ′

j ) for all j , so T ′(V ) = T ′′(V ).

Hence, we have an assignment T ′ : (Vark ) → (Top). To show that it is a system

of topologies, we first need to show that it is a functor, i.e. that if ϕ : V →W is a

morphism, then ϕ : V (k) →W (k) is T ′-continuous. Cover V with affine open

subvarieties,

V = ⋃
i∈I

Vi ,

and similarly for W ,

W = ⋃
j∈J

W j .

For any U ⊆W (k) which is T ′-open, we need to check that, for all i ∈ I ,ϕ−1(U )∩
Vi is T -open. Now,

ϕ−1(U )∩Vi =ϕ−1

(⋃
j∈J

U ∩W j

)
∩Vi =

⋃
j∈J
ϕ−1(U ∩W j )∩Vi .

Sinceϕ|Vi is a continuous map for the T -topology, it follows that this is an open

subset of Vi (since U ∩W j is T -open for every j ).

Suppose now that ϕ : V →W is an open immersion. Then ϕ : V (k) →W (k)

is already injective, so we only need to check that it is open for the T -topology.

Suppose that U ⊆V (k) is open: if

W = ⋃
i∈I

Wi

18
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is an open cover by affine open subvarieties, let

ϕ−1(Wi ) = ⋃
j∈J

Vi j

be a cover by affine open subvarieties so that

ϕ(U )∩Wi (k) = ⋃
j∈J
ϕ(U ∩Vi j (k))

and hence, since ϕ|Vi j is T -open, it follows that ϕ(U )∩Wi (k) is T -open. This

holds for every i ∈ I , so ϕ(U ) is T ′-open.

Finally, suppose ϕ : V → W is a closed immersion. Then again ϕ : V (k) →
W (k) is injective and we need to check that it is closed. Let C ⊆V (k) be closed;

we aim to show that ϕ(C ) ⊆W (k) is closed.

* Don’t let the unions scare you – all index sets are finite, here, so unions of closed

sets are closed.

Let

W = ⋃
i∈I

Wi

be an open cover by affine subvarieties, and let ϕ−1(Wi ) be covered by affine

open subvarieties Vi j as before. Then ϕ|Vi j is a closed map, so ϕ|Vi j (C ∩Vi j (k))

is closed in Wi (k) for all j , in particular

ϕ(C )∩Wi (k) =⋃
j
ϕ(C ∩Vi j )

is closed for every i ∈ I , and so ϕ(C ) is closed. ■
THE next step is considering possible relationships between these functors.

As mentioned, there are several examples of systems of topologies – some are

finer, some are coarser.

SUPPOSE you have two different systems of topologies, T1 and T2, and that

for any k-variety V the T1-topology on V (k) is finer than the T2-topology, i.e.

T2(V ) ⊆ T1(V ). We can establish a natural transformation between the two

functors T1 and T2 in the following way: for each k-variety V , consider the

identity map

idV (k) : (V (k),T1(V )) → (V (k),T2(V ))

that is continuous because T2(V ) ⊆ T1(V ). When this happens, we write T2 ≤ T1

and say T1 refines T2.

ONCE we establish this nomenclature, one can easily see that the Zariski

system of topologies sits at the bottom of this ordering. Since Zariski open

subsets naturally correspond to open immersions, the corresponding subsets

are open subsets of the k-points of the variety.
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2.4.1 Properties of the refinement relationship

THE relationship ≤ between systems of topologies can be established by

looking at affine space exclusively.

THEOREM 2.4.3. — Let T,T ′ be two different systems of topologies. Suppose that,

for every n ∈N, T ′(An
k ) ⊆ T (An

k ); then T ′ ≤ T .

Proof. Since the T ′-topology onAn
k (k) refines the T -topology and closed im-

mersions turn into closed embeddings, the statement is true for every affine

variety; moreover, it is true for any k-variety because it is locally affine. ■

IF you consider a system of topologies, then very often it will not assign to

V ×W the product of the topologies it had assigned to V and W . This happens,

for example, for the Zariski system of topologies. Even for the étale-open

system, this will happen only under special conditions (namely, that the system

is induced by a field topology). One of the inclusions still holds.

LEMMA 2.4.4. — Suppose T is a system of topologies. If V and W are k-varieties,

then the T -topology on V ×W refines the product topology.

Proof. Since projections π1 : V ×W →V and π2 : V ×W →W are morphisms,

they are transformed into continuous maps in the T -topology. ■

AS a consequence, we need only check that a certain topology is discrete on

A1
k to deduce that the whole system is the discrete one. This will be particularly

useful when we will use the étale-open topology to characterize largeness of

fields.

COROLLARY 2.4.5. — If T is a system of topologies and the T -topology onA1
k is

discrete, then T is the discrete system of topologies.

2.4.2 Restriction of systems of topologies

WORKING with varieties often involves changing their base field, for exam-

ple through Weil descent or classical base change. What follows is a way of

implementing this machinery into the framework of systems of topologies.

Definition 2.4.6. — Suppose k ⊆ K is a field extension and T is a system of

topologies defined on K . For any k-variety V , consider its base change VK and

identify it with VK (K ): then we can see V (k) as a subspace of VK (K ) endowed

with the T -topology. The subspace topology induced on V (k) will be called the

restriction of the system of topologies T , ResK /k (T ).

WE claim that this defines a transformation on systems of topologies (or, in

other words, a functor between certain categories).

PROPOSITION 2.4.7. — If T is a system of topologies, then R := ResK /k (T ) is a

system of topologies.
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Proof. Let f : V → W be a map of k-varieties. Consider its base change to

fK : VK → WK , so the induced map fK : VK (K ) → WK (K ) will be continuous

with respect to T . Since f = fK |V (k), f is also R-continuous. Suppose now that

f were an open (closed) immersion. Assume V is an open (closed) subvariety of

W and f is the inclusion; then fK : VK →WK is still an open (closed immersion),

so we can also assume VK is an open (closed) subvariety of WK . If U is R-open

in V (k), then U =U ′∩V (k) for some T -open U ′ ⊆VK (K ) which is also T -open

in WK (K ) ∼= W (K ). Since U ⊆ V (k), we can also rewrite U = U ′∩W (k), and

hence we get that U is R-open in W (k). Similarly for closed subsets. ■

SUPPOSE we considered the category Ck defined in the previous section,

i.e. the poset of systems of topologies on k together with the ≤ relationship.

Similarly, there is a category CK , and the restriction of systems of topologies

establishes a functor

ResK /k :CK →Ck ,

since the construction of the restriction preserves ≤.

AS a toy example of the effect of this functor,

PROPOSITION 2.4.8. — Denote by Zk and ZK the Zariski systems of topologies

over k ⊆ K . Then ResK /k (ZK ) agrees with Zk .

Proof. We only need to work in An
k (k) = kn , since the ≤ relationship can be

checked on affine space, and moreover we already know that Zk ≤ ResK /k (ZK ).

Hence, suppose C ⊆ K n is Zariski closed, i.e. C =V ( f1)∩·· ·∩V ( fm) for some

f1, . . . fm ∈ K [x1, . . . xn]. Showing the reverse inequality boils down to showing

that C ∩kn is Zariski closed, i.e. finding equations with coefficients in k for

C ∩kn .

To do so, we can assume m = 1 (since intersections of closed subsets are

closed). Let f =∑
I aI x I be the equation of C . Let 〈aI 〉k ⊆ K be the k-linear span

of the coefficients of f , which is finite dimensional hence 〈aI 〉k = kb1⊕·· ·⊕kbd

for some b1, . . .bd ∈ K . Then we can rewrite

f =∑
I

aI x I =
d∑

i=1
gi (x)bi

for some gi ∈ k[x1, . . . xn]. Then C ∩kn =V (g1, . . . gd ) is Zariski closed in kn . ■

2.4.3 Restricting Ek

FINALLY, we look at what happens to the étale-open system of topologies

when we apply this functor.

DENOTE by EK the étale-open system on K . In the case of the étale-open sys-

tem of topologies, algebraic extensions k ⊆ K determine restrictions ResK /k (EK )

that are refined by Ek .
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IN general categorical nonsense, the Weil restriction of a K -variety X is

defined to be the k-variety ResK /k X that represents the functor from K -varieties

to sets defined by ResK /k X (S) := X (S ×L). If X = SpecK [x1, . . . xn]/( f1, . . . fm)

then the Weil restriction can be computed: suppose e1, . . .er is a k-basis of

K and set xi = y1,i e1 +·· ·+ yr,i er for some new variables yi , j . Let g`,h be the

polynomials with coefficients in k and variables yi , j such that f` = g`,1e1 +
·· · + g`,ses . Then ResK /k X := Speck[yi , j ]/(g`,h). Moreover, to each map f :

V → W of K -varieties comes attached a map of the restrictions, ResK /k ( f ) :

ResK /k (V ) → ResK /k (W )4. We recall some properties of the Weil restriction;

note that it might not exist in general, but it certainly exists for affine varieties

(by the construction we have just exhibited). More generally, the Weil restriction

exists for any quasi-projective variety (by gluing together the restrictions of an

affine open covering).

PROPOSITION 2.4.9 ([Bos90], 7.6.2; [CGP15], A.5.2(4)). — Suppose k ⊆ K is a

finite extension, V ,W are affine k-varieties (so that ResK /k (VK ) and ResK /k (WK )

exist). Then,

1. the Weil restriction and base change are adjoint functors; in particular,

there is a natural morphism V → ResK /k (VK ), which is a closed immersion,

2. if f : V → W is an open immersion (closed immersion, étale map) of K -

varieties, then ResK /k ( f ) : ResK /k (V ) → ResK /k (W ) is an open immersion

(closed immersion, étale map) of k-varieties.

THESE facts allow us to prove a technical lemma, which in turn will allow us

to prove that Ek refines ResK /k (EK ).

LEMMA 2.4.10. — Suppose K is a finite extension of k, V is a k-variety such

that the Weil restriction of VK exists. If U ⊆VK (K ) is an étale image in K , then

U ∩V (k) is an étale image in k.

Proof. Suppose U = h(X (K )) for some étale morphism of K -varieties h : X →
VK . Let X = X1 ∪·· ·∪Xn for some affine open Xi : then there is a natural étale

morphism

ĥ : X̂ = X1 t·· ·tXn →VK

which is étale and such that U = ĥ(X̂ (K )), so we can always assume that X

is affine (replacing it with X̂ ). Then ResK /k X exists and so we can consider

ResK /k h: since this is an étale morphism ResK /k X → ResK /kVK , U is a k-étale

image in ResK /kVK (k) (identified with VK (K )). Since V → ResK /kVK is a closed

immersion, the induced map is a closed embedding and U ∩V (k) is an étale

image in V (k). ■
4In other words, ResK /k is a functor.
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WE can now prove the fact that, in algebraic extensions, the étale-open topol-

ogy on the smaller field has at least the same open sets as the restriction of the

étale-open topology from the bigger fields.

THEOREM 2.4.11. — If k ⊆ K is algebraic, then Ek refines ResK /k (EK ).

Proof. Let V be an affine k-variety. The previous lemma takes care of the finite

case. In the infinite case, suppose X is a K -variety and g : X → VK is étale:

consider an intermediate extension k ⊆ F ⊆ K such that F /k is finite and X and

g are defined over F , so X = YK and g = fK for some F -variety Y and morphism

of F -varieties g : Y →VF . Then

U = ⋃
F⊆E⊆K

fE (YE (E))∩V (k)

where F ⊆ E ⊆ K is finite. Each element of the union is Ek -open, so U is Ek -

open. ■

IF the extension is particularly well-behaved, then we get that the two topolo-

gies actually agree.

PROPOSITION 2.4.12. — Suppose that k ⊆ K is purely inseparable, then Ek

agrees with ResK /k (Ek ).

Proof. If k ⊆ K is purely inseparable, it is in particular algebraic, hence one

inclusion is proven; we need to show that ResK /k (EK ) refines Ek . Let U =
f (X (k)) ⊆ V (k) be an étale image, where f : X → V is an étale morphism of

k-varieties. By base changing to K we obtain another étale morphism fK :

XK → VK and we call U ′ = fK (XK (K )). On the one hand, U ⊆ U ′∩V (k). On

the other, let p ∈U ′∩V (k), so that in particular κ(p) ∼= k. Consider now the

fiber fp : Xp = X ×V Specκ(p), which is étale – as it is the base change of an

étale map. As p ∈ fK (XK (K )), the fiber over p contains a point q and κ(q) ⊆ K

is a separable extension of k, thus κ(q) = k and so q ∈ X (k). In particular,

p = f (q) ∈ f (X (k)) =U . ■

2.4.4 Encoding algebraic properties

HIC Rhodus, hic saltus. We can finally appreciate the full power of the étale-

open system of topologies as a dictionary between algebraic and topological

properties, and more generally as a natural system of topologies generalizing

topologies emerging in various contexts.

WE aim to show the following:

THEOREM 2.4.13. — k is not separably closed if and only if the Ek -topology on

V (k) is Hausdorff for all quasi-projective k-varieties V .

FIRST of all, we only need to work over the affine line.
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LEMMA 2.4.14. — For any system of topologies T over k, the T -topology onA1(k)

is Hausdorff if and only if the T -topology is Hausdorff on any quasi-projective

k-variety V .

Proof. One implication is immediate. For the other, assume that V is a quasi-

projective k-variety. Then, by definition, there is a morphism V →Pn
k and the

map on points V (k) →Pn
k (k) is injective and continuous. In particular, ifPn

k (k)

is Hausdorff then so is V (k). Consider now a,b ∈Pn
k (k) distinct points, and

consider an hyperplane going through both of them, i.e. a copy ofAn
k insidePn

k

such that a,b ∈An
k (k). Then, since the product of Hausdorff spaces is Hausdorff

and the T -topology onAn
k (k) refines the product of the T -topologies on the

A1
k (k)s, we conclude that a,b can be separated by open subsets. In particular,

that the T -topology onPn
k (k) is Hausdorff. ■

LEMMA 2.4.15. — Suppose k ⊆ K is finite. If theEK -topology onA1
K is Hausdorff,

then the Ek -topology onA1
k is Hausdorff.

Proof. This is a consequence of the fact that the étale-open topology on k

refines the restriction of the one from K . ■

MOREOVER, we can already reduce the statement a bit: if k is separably closed,

the étale-open topology is the Zariski topology, and so it is clearly very much

not Hausdorff. We only need to show the reverse implication. Notice that by

the previous lemma, we can move to a finite extension k ⊆ K and exhibit a

disjoint pair of non-empty EK -open subsets ofA1
K (K ). To do that, we can apply

the following lemma:

LEMMA 2.4.16. — Suppose that k is not separably closed. Then there are finite

field extensions k ⊆ K ⊆ L such that either L is an Artin-Schreier extension of K ,

or there is a prime p 6= char(k) such that K contains a primitive pth root of unity

and L = K (a) for some a ∈ L \ K , ap ∈ K .

Proof. Since k is not separably closed, we have non-trivial finite Galois exten-

sions; let p > 1 be minimal such that there are k ⊆ K ⊆ L with L/K a Galois

extension of degree p. We aim to show p is prime, so let q | p and pick a

subgroup H of Gal(L/K ) of order q . Consider L′ = LH so that L/L′ is Galois of

order q . By minimality, p = q and it is prime. Hence if p = char(k), then L/K is

Artin-Schreier. If p 6= char(k), let ζ be a primitive pth root of unity and consider

K (ζ). By minimality of p, since [K (ζ) : K ] ≤ p −1, then ζ ∈ K and thus L/K is a

Kummer extension, i.e. L = K (a) for some a ∈ L \ K with ap ∈ K . ■

WE can now prove theorem 2.4.13. By the lemma, there is a finite extension

K of k such that either the pth power map K × → K × is not surjective for some

prime p 6= char(k), or the Artin-Schreier map K → K is not surjective. In the

first case, consider P ⊆ (K ×)(K ) as the image of the pth power map; in the
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second case, consider P ⊆A1
K (K ) as the image of the Artin-Schreier map. In

the first case, P is a non-trivial open subgroup of (K ×, · ); in the second case, P

is a non-trivial open subgroup of (K ,+). For any a ∈ (K ×)(K )\P , the set P ′ = aP

(respectively, P ′ = a +P ) is open and disjoint from P , hence P and P ′ witness

that the topology onA1
K (K ) is Hausdorff.5

MOREOVER, the étale-open topology is an usual suspect in the case of sep-

arably closed fields (in some sense, since the Zariski system of topologies is

refined by every other system of topologies, this tells us that the étale-open

topology on separably closed fields carries the bare minimum of information,

and nothing more).

PROPOSITION 2.4.17. — Suppose k is separably closed, then for any k-variety V

the étale-open topology agrees with the Zariski topology.

Proof. Recall that the étale-open topology refines the Zariski topology (by

2.3.1). Hence we only need to show the reverse inclusion. Let ϕ : X → V be

an étale morphism of k-varieties and call U = ϕ(X (k)). Notice that, at the

scheme-theoretic level, ϕ(X ) ⊆V is an open subvariety6. For now, assume k is

algebraically closed: then ϕ(X )(k) =ϕ(X (k)).

Consider now k separably closed, and L = kalg. Then EL is the Zariski topol-

ogy and, since k ⊆ K is purely inseparable, by 2.4.12 Ek agrees with ResL/k (EL).

Thanks to 2.4.8, ResL/k (EL) is exactly the Zariski system of topologies on k. ■

2.4.5 Large fields, reprise

WE can finally characterize large fields as precisely the class of fields over

which the étale-open topology carries information.

THEOREM 2.4.18. — k is not large if and only if Ek is the discrete system of

topologies.

Proof. Suppose k is not large, hence there is a smooth k-curve C such that C (k)

is finite and non-empty. Let p ∈C (k) and consider a local coordinate f ∈OC ,p .

There is an open neighbourhood U ⊆ C of p such that f : U → A1
k is étale,

hence f (U (k)) ⊆A1
k (k) is a finite, open subset. This implies that the étale-open

topology onA1
k (k) is the discrete one and hence that Ek is the discrete system

of topologies. Viceversa, suppose Ek is the discrete system of topologies. Let

C be a smooth k-curve such that C (k) 6= ;; pick some smooth point p ∈C (k).

Since the étale-open topology on C (k) is discrete, {p} is an étale image and so

there is an étale map f : X →C such that f (X (k)) = {p}. By étaleness, X is also

a smooth k-curve and, since étale maps are finite-to-one, X (k) is non-empty

and finite. As a consequence, k is not large. ■
5This is enough because the action of the affine group on K is 2-transitive, i.e. the induced

action on K 2 is transitive.
6This is because étale maps are universally open, in particular they are open. See [Gro64c],

2.4.6.
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THIS allows us to derive a somewhat natural fact about large fields. Suppose

k ⊆ K is algebraic, and k is large. If K were not large, then EK would be discrete,

hence ResK /k (EK ) would be discrete. Since, by 2.4.11, Ek refines ResK /k (EK ),

we obtain that Ek would also be discrete, and hence k would not be large, a

contradiction. We have proven,

COROLLARY 2.4.19. — Suppose k ⊆ K is algebraic and k is large. Then K is large.

2.5 Complements
THE next two sections will be somehow complementary to the topic, in that

they will not be necessary to understand the other chapters, but somehow try

to answer natural questions around them.

2.5.1 Definability

THE first question is: how elementary is the étale-open topology? or more

precisely, what is the elementary content of this topology? What kind of model-

theoretic tools can we use to understand it? The answers are not exactly satis-

factory. In fact, it is not clear at all – and it is probably false – that the étale-open

topology is somehow seen by the theory of the field. While it is true (see below)

that étale images remain étale images under elementary extensions, the situa-

tion with open subsets in general remains elusive. Throughout this section, fix

an extension of fields k ⊆ K which is also elementary in the language of fields,

i.e. k ¹ K .

THEOREM 2.5.1. — Suppose X =ϕ(k) is a definable set. If X is a k-étale image,

then X ∗ =ϕ(K ) is a K -étale image.

Proof. Suppose X ⊆ kn , so that there is an étale map f : V →An such that

X = f (V (k)) ⊆An(k) = kn . Note that we can assume that V is smooth and has

dimension n. Let g : k[x1, . . . xn] → k[y1,...ym ]
(h1,...hm−n ) be the induced map of k-algebras,

and let pi := g (xi ), i = 1, . . .n. Rewrite

S := k[y1, . . . ym]

(h1, . . .hm−n)
∼= k[y1, . . . ym][x1, . . . xn]

(h1, . . .hm−n , x1 −p1, . . . xn −pn)

and rename the generators of the ideal as h̃1, . . . h̃m . If R = k[x1, . . . xn], then

S ∼= R[y1, . . . ym]/(h̃1, . . . h̃m) and the map f is étale if and only if the element

J := (∂h̃i /∂y j )i , j is a unit in S.

* This equivalence is explained, for example, in chapter 3, section 5 of [Mum99].

It boils down to the fact that being étale is equivalent to ΩS/R = (0), where ΩS/R is

defined as the S-module generated by the symbols dX1, . . .dXn modulo the relations∑n
j=1∂ fi /∂X j · dX j = 0. This module is then zero precisely when the jacobian is

invertible.
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Let θ be the sentence that says that 1 ∈ (h̃1, . . . h̃m , J) ⊆ R[y1, . . . ym]: this can

be written with a first-order formula in virtue of the bounds on ideals in poly-

nomial rings, see section 5 of [Cha97]. Then k Í θ, hence K Í θ and so the map

f : V →An of K -varieties is still étale, and X ∗ = f (V (K )). ■

NOTE, however, that it is not true that, given X =ϕ(k), X is an étale image if

and only if a certain first-order formula holds; in other words, being an étale

image is not first-order: for example, {0} is an étale image in every finite field,

but not in a pseudofinite field.

2.5.2 Pseudofinite fields

WE now turn to another natural question, i.e. if the étale-open topology is

always a field topology. By field topology we mean an Hausdorff topology τ

on F such that inversion, addition and multiplication are τ-continuous. This

allows to induce a system of topologies Tτ on F . We already know the answer:

since we assume that field topologies are Hausdorff, it is false for example in

the case of separably closed fields. There is, however, another – somehow “less

trivial” – example.

FIX a pseudofinite field F , and denote by EF the étale-open system of topolo-

gies on F . We now characterize the case where a system of topologies is actually

induced by a field topology.

LEMMA 2.5.2. — Suppose T is a system of topologies. Then T is induced by a

field topology on F if and only if the T -topology onAn(F ) is the product of n

copies of the T -topology onA1(F ).

Proof. On the one hand, by definition if T is induced by a field topology then

the product of the topologies is exactly the topology on the product. On the

other hand, let τ be the T -topology on A1(F ). Then by definition of system

of topologies, it is a field topology (because inversion and the operations are

morphisms of varieties). The system induced by τ, call it Tτ, coincides with T

on affine n-space for every n by hypothesis. In particular, Tτ = T . ■

WITH this in mind, we can look for a contradiction to prove the following

theorem.

THEOREM 2.5.3. — If F is pseudofinite, thenEF is not induced by a field topology.

Proof. Suppose char(F ) 6= 2 (otherwise, substitute every 2 for a 3 in the upcom-

ing equations). Let

W =V (y −x2) \ {(0,0)} ⊆A2

and, if π :A2 →A1 is the projection on the first coordinate, let P =π(W ). Note

that P is étale-open (actually, an étale image) and, since the subtraction map is
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a morphism of varieties,

E = {(a,b) ∈ F 2 | a −b ∈ P }

is also étale-open.

Suppose EF is induced by a field topology, then there must be étale images

U0,U1 ⊆ k such that U0 ×U1 ⊆ E . Denote by µ the measure on definable sets in

F (see [Cha97]): we aim to show that µ(U1) = 0, against the fact that every étale

image (over a large field) is infinite.

Fix a finite field Fq , for q = pn , and let E be a finite extension. Let b1, . . .bk ∈ E

be pairwise distinct elements. First, we claim that if

S = {a ∈ E | a −bi ∈ P, i = 1, . . .k}

then for a sufficiently big E , |S| < 21−k |E | (†). As a consequence, using the

definability of µ, we have that if b1, . . .bk ∈ F and

S′ = {a ∈ F | a −bi ∈ P, i = 1, . . .k},

then µ(S′) < 21−k . This implies that

µ({a ∈ F | a −b ∈ P, ∀b ∈U0}) = 0,

but this set contains U1, so µ(U1) ≤ 0, a contradiction.

To show (†), consider the quasi-affine curve C given by the equations

x −bi = y2
i , x −bi 6= 0

for i = 1, . . .k. As it is absolutely irreducible, one could apply the Lang-Weil

bounds to it, leading to the required estimate of |S|. ■
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Applications: large stable fields

D’in su la vetta della torre antica,

passero solitario, alla campagna

cantando vai finché non more il giorno;

ed erra l’armonia per questa valle.

Primavera d’intorno

brilla nell’aria, e per li campi esulta,

sí ch’a mirarla intenerisce il core.

Giacomo Leopardi, Il passero solitario
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AS a first application of the techniques developed in the last chapter, we

follow [Joh+20] and prove an instance of a famous conjecture, the Stable Fields

Conjecture.

THEOREM. — Suppose k is a stable, large field. Then k is separably closed.

SOMEHOW, this boils down to translating the algebraic notion of separably

closed into a topological notion, which can then interact fruitfully with stability

– and particularly, with generics – to derive a contradiction.

WE then need to introduce the machinery of stability theory and, in particular,

of groups (and fields) definable in a stable theory. The classical reference for

this is [Poi01], though some of the proofs might not look very clear at first; in

that case, I suggest checking Chernikov’s notes, see [Che15].

3.1 Stable groups
LET L be a language and let T be a complete theory in this language. Fix a

monster model M of this theory. By Íϕ, we will mean that the formula ϕ holds

in the monster. We shall define stability as the absence of a certain pattern in

definable sets.

Definition 3.1.1. — An L-formula ϕ(x, y) is said to have the order property if

there are sequences of elements {ai }i∈ω, {bi }i∈ω ⊆M such that ϕ(ai ,b j ) holds if

and only if i < j . The formula ϕ is said to be stable if it does not have the order
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property. The theory T is said to be stable if all of its formulae are stable. A

structure M in a language L is said to be stable if Th(M) is a stable theory.

THE condition in the definition can then be relaxed to a finitary condition.

LEMMA 3.1.2. — A formula ϕ(x, y) is stable if and only if, for some positive

k ∈N, there are no {a1, . . . ak } ⊆M and {b1, . . .bk } ⊆M such that ϕ(ai ,b j ) holds

if and only if i < j .

Proof. Suppose ϕ(x, y) were unstable, then we could produce such finite se-

quences for every k by truncating the infinite ones. Viceversa, suppose ϕ(x, y)

were stable but, for every k ≥ 1, it could be possible to produce {a1, . . . ak } and

{b1, . . .bk } ⊆ M such that ϕ(ai ,b j ) holds if and only if i < j . Choose tuples

(xi | i <ω), (y j | j <ω) of variables and consider the type

π(x) = {ϕ(xi , x j ) | i ≤ j }∪ {¬ϕ(xi , x j ) | i > j }.

It is finitely satisfiable and hence, by saturation, we can produce two infinite

sequences that show that ϕ(x, y) has the order property. ■

FOR the sake of completeness, I now recall a series of standard results on

stable theories that can be found, for example, in chapter 8 of [TZ12]. The

intention, here, is providing a glimpse into the many faces of stability, without

spending too much time on results that will not be directly related to what

we aim to do. For a set A, denote by Defϕ(A) the Boolean algebra generated

by instances of ϕ. Then Sϕ(A) is the space of ultrafilters of Defϕ(A), whose

elements we call ϕ-types.

LEMMA 3.1.3. — For a formula ϕ(x, y), the following are equivalent:

1. there is an infinite cardinal λ such that |Sϕ(B)| ≤λ whenever |B | ≤λ,

2. |Sϕ(B)| ≤ |B | for every infinite B,

3. ϕ(x, y) is stable,

4. ϕ(x, y) does not have the binary tree property, i.e. there is no binary tree

(bs | s ∈ <ω2) of parameters such that, for all σ ∈ ω2, {ϕσ(n)(x,bσ|n | n <ω}

is consistent, where ϕ0 =¬ϕ and ϕ1 =ϕ.

THERE is a fifth way of rephrasing stability, but we first need a definition.

Definition 3.1.4. — A complete type p over some set A is definable over some

other set B if for any formula ϕ(x, y) there is an L(B)-formula ψ(y) such that,

for all a ∈ A, ϕ(x, a) ∈ p if and only if ψ(a) is true. We write ψ(y) as dp xϕ(x, y).

THEOREM 3.1.5. — A formula ϕ(x, y) is stable if and only if every complete

ϕ-type p ∈ Sϕ(A) is definable over A.

30



chapter 3

WE now dwelve more specifically into the (rich) theory of groups definable

in (models of) stable theories. Fix a stable group, i.e. a group G definable1 in

M whose group operation is also definable. Some examples of stable groups

include abelian groups and free groups (as pure groups) and groups of the form

GLn(k) for some algebraically closed k. Throughout this section, a formula

ϕ(x, y) will be called a subgroup formula if ϕ(G , a) ≤G for every a ∈G |y |.
FIRST, we notice that definable subgroups of stable groups enjoy some form

of descending chain condition.

PROPOSITION 3.1.6. — Suppose G is stable, then for every subgroup formula

ϕ(x, y) there is a natural number n such that, for every b1, . . .bm ∈G |y | there are

bi1 , . . .bin such that

ϕ(G ,b1)∩·· ·∩ϕ(G ,bm) =ϕ(G ,bi1 )∩·· ·∩ϕ(G ,bin ).

Proof. Suppose, on the other hand, that there is m arbitrarily big such that

ϕ(G ,b1)∩ . . .ϕ(G ,bm)(ϕ(G ,bi1 )∩·· ·∩ϕ(G ,bin )

for every choice of {bi1 , . . .bin } ( {b1, . . .bm}. For every i = 1, . . .m there is ai ∉
ϕ(G ,bi ) but ai ∈ϕ(G ,b j ) for every j 6= i . For every I = {i1, . . . ir } ⊆ {1, . . .m}, let

bI = bi1 · · ·bir . Thenϕ(ai ,bI ) is true if and only if i ∉ I . Using compactness, this

shows that ϕ(x, y) has the indipendence property, i.e. there exist {ai }i∈ω ⊆G

and {bI }I⊆ω such that ϕ(ai ,bI ) is true if and only if i ∈ I . If you now fix, for

example, c j = b{0,1,... j−1}, then ϕ(ai ,c j ) is true if and only if i ∈ {0, . . . j −1} if and

only if i < j , so that ϕ(x, y) is an unstable formula. ■
COROLLARY 3.1.7 (Baldwin-Saxl). — Suppose G is a stable group, then for every

subgroup formula ϕ(x, y) there is a natural number n such that for every family

{ai | i ∈λ} ⊆G |y | there are ai1 , . . . ain such that⋂
i∈λ

ϕ(G , ai ) =ϕ(G , ai1 )∩·· ·∩ϕ(G , ain ).

Proof. By the previous result, there is a natural number n such that every finite

intersection of instances of ϕ(x, y) is equal to the intersection of n of them. In

particular, this forms a uniformly definable family (defined by n instances of

ϕ(x, y)). Every uniformly definable family in a stable group must satisfy a chain

condition, nominally that there is a natural number m such that chains have

length at most m. Otherwise, suppose there was a descending chain

ϕ(G ,b1))ϕ(G ,b2)) · · ·)ϕ(G ,bn)) . . .

for some sequence of parameters {bn | n ∈ ω}. Then, inductively, one can

1Or even type-definable.
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choose elements ci ∈ϕ(G ,bi ) \ϕ(G ,bi+1) one obtains a sequence of elements

{ci | i < ω} such that ϕ(ci , a j ) holds if and only if i < j , contradicting stabil-

ity. There must then be a minimal element ϕ(G , a), equal to the intersection⋂
i∈λϕ(G , ai ). ■

* Note that, in truth, this result is local: in other words, it doesn’t require the stability

of all formulae. It is sufficient thatϕ(x, y) is stable, since then all Boolean combinations

of it remain stable. This will become relevant when we move on to local stability theory.

LET us make a brief stop that will not be immediately useful, because this

corollary allows us to (locally) define connected components. For every formula

ϕ, consider G0
ϕ to be the intersection of all finite index subgroups of G defined

by instances of ϕ. By the corollary, G0
ϕ is the intersection of finitely many such

subgroups, hence definable.

Definition 3.1.8. — The connected component of G is G0 = ⋂
ϕG0

ϕ. G is said

to be connected if G0 =G . In general, G0 does not have finite index, but it has

bounded index – in fact, [G : G0] ≤ 2|T |.

AS an example, consider as G a saturated elementary extension ofZ. Then

G0 =⋂
n<ωnG so that G/G0 ∼= Ẑ.

IN general, G0 is not definable (it is infinitely definable). For now, let’s forget

about G0, and leave the stage to the central tool we will use.

Definition 3.1.9. — A definable subset A ⊆G is generic if there are a1, . . . an ∈G

such that G = a1 A ∪ ·· · ∪ an A. A type p is generic if it contains only generic

formulae.

NOTICE that Poizat distinguishes between left, right and bilateral generics

(and in the end, they coincide); since we will only work with abelian groups, we

only need left genericity to start with. Moreover, note that G0 (or rather, its type

G0(x)) is generic: its formulae define finite index subgroups, which are generic.

LEMMA 3.1.10. — Suppose A ⊆G is definable and G is stable. If A is not generic,

then G \ A is.

Proof. Suppose that G \ A is not generic, then for every tuple a1, . . . an ∈G there

is an x such that xai ∈ A for all i . Since A is not generic, for every b1, . . .bn there

is y such that ybi ∉ A for all i . We now produce sequences {ci }i∈ω, {di }i∈ω such

that ψ(x, y) = x y ∈ A has the order property: start with any c1. Given c1, . . .cn ,

choose dn so that dnci ∉ A for all i ≤ n; given d1, . . .dn , choose cn+1 so that

cn+1di ∈ A for all i ≤ n. We have shown that ψ(x, y) has the order property. ■

NOW, we turn towards proving the so-called fundamental theorem of stable
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groups, 3.1.12. To do so, we begin by noticing that G acts2 on the set of partial

type that concentrate3 on itself as follows: if π(x) is a partial type and g ∈ G ,

then

g ·π(x) := {ϕ(g−1 · x) |ϕ(x) ∈π(x)}.

We can then define stabilizers under this action: for a type π, let

Stab(π) := {g ∈G | g ·π=π}.

THE fundamental theorem will be deduced as a corollary of the following

result. The proof can be found in [Pal18], Proposition 6.13(3). We sketch one

part.

THEOREM 3.1.11. — If p is a global type concentrating on G, then p is generic if

and only if G0 = Stab(p).

Proof. Suppose p is a global, generic type concentrating on G . Then its stabi-

lizer is the intersection of definable subgroups of finite index; more specifically,

for any formula ϕ, define p|ϕ to be the corresponding complete global ϕ-type,

and let dpxϕ(x, y) be its definition (see 3.1.5). Then define

Stab(p,ϕ) := {g ∈G | ∀y(dpxϕ(x, y) ↔ dpxϕ(g−1 · x, y))},

so that Stab(p) :=⋂
ϕ(x,y)∈L Stab(p,ϕ). It follows that G0 ⊆ Stab(p). For the other

inclusion, if H ≤ G is definable and has finite index, then p must contain

x ∈ g · H for some g ∈ G . By compactness, there is some g ′ ∈ G such that p

contains x ∈ g ′ ·G0, and so for every h ∈G , g ·p contains x ∈ (hg ′) ·G0. Hence,

if h ∈ Stab(p), then we can find h1,h2 ∈ G such that (h1h) · g ′ = h2 · g ′, so that

h ∈G0. ■
COROLLARY 3.1.12. — Every coset of G0 contains a unique global complete

generic type. Then, G is connected (i.e., G = G0) if and only if it has a unique

generic type.

Proof. We begin by finding a complete generic type in G0. Notice that G0(x) is

a generic type, so we can extend it to a global complete generic type p4. Now, if

q is another generic global type extending G0, take some a Í p and some b Í q.

Since G0 = Stab(p) = Stab(q), then

a Í p ⇐⇒ b = (ba)−1 ·a Í (ba)−1 ·p= p,

2Most of what we will do can be done for a more general, type-definable homogeneous space
(G ,S).

3A type π concentrates on a formula ϕ if Íπ→ϕ.
4This can be done as follows: let I be the set of non-generic formulae. Then

G0(x)∪ {¬ϕ(x,b) |ϕ(x, y) ∈ I ,b ∈M}

is consistent, so we can complete it to a global type that will again be generic.

33



chapter 3

and viceversa. So p= q. By translating, we obtain a unique generic type in every

coset of G0. ■

3.1.1 Stable fields

NOW, consider a language L = {+, · ,0,1}, a stable L-theory T and a monster

model k. There are now two ways in which a definable subset can be generic

– with respect to the additive group of k or with respect to the multiplicative

group of k (i.e., k×). This gives rise to two notions of genericity.

Definition 3.1.13. — A definable subset X ⊆ k is said to be additively generic

if there is a finite A = {a1, . . . an} ⊆ k such that k = (X + a1)∪ ·· ·∪ (X + an). A

definable subset Y ⊆ k× is said to be multiplicatively generic if there is a finite

A = {a1, . . . an} ⊆ k× such that k× = a1Y ∪·· ·∪anY .

NECESSARILY, then, one has two notions of genericity for types as well.

Definition 3.1.14. — A partial (unary) type p over k is additively generic if

each of its formulae defines an additively generic subset of k; similarly, it

is multiplicatively generic if each of its formulae defines a multiplicatively

generic subset of k.

IT turns out, however, that this book-keeping is not really necessary. In

particular,

FACT 3.1.15. — Consider a stable field k. Then there is a unique additively

generic type p+, a unique multiplicatively generic type p×, p+ = p× and a defin-

able A is generic if and only if p+ concentrates on A.

Proof. The proof proceeds by showing that (K ,+) and (K ×, · ) are connected.

The argument is the same as in 3.3.4. ■

3.2 Large stable fields
WE shall prove that a large stable field is separably closed. In this case, we will

contradict the non-discreteness of the topology. Later on, we will contradict

the stability by exhibiting an explicit unstable formula.

HERE is the philosophy of the proof: as we know, k is not separably closed

precisely when the étale-open topology is Hausdorff on every quasi-projective

k-variety. If we then assume that our field is large, stable and not separably

closed, we can produce two disjoint open sets – we can even choose them from

the base, so that they are definable. Now stability comes in: they cannot both

be generic, since they are disjoint, and thus the complement of one of them

must be generic. But this means that we can translate it to cover k×, and in

particular, taking complements, we can find {0} as the intersection of finitely

many étale images.

THEOREM 3.2.1. — Large stable fields are separably closed.
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Proof. Suppose k is stable and not separably closed. By 2.4.13, the étale-open

topology on A1
k (k) is Hausdorff. Notice that the topology is invariant un-

der affine transformations, since they are isomorphisms of k-varieties. Pick

U1,U2 ⊆A1
k (k) non-empty, basic disjoint open subsets. Note that images of

morphisms of varieties are definable, so U1 and U2 are definable: if they were

both generic, the unique generic type would also concentrate on their inter-

section and thus they would overlap, so we can assume one of them is non-

generic. Let U1 be non-generic and, if necessary, translate it so that 0 ∈U1. If

U1 is non-generic, thenA1
k (k) \U1 is (multiplicatively) generic, hence there are

a1, . . . an ∈ k× such that

k× = a1(A1
k (k) \U1)∪·· ·∪an(A1

k (k) \U1).

By taking the complements, we get

{0} = a1U1 ∩·· ·∩anU1,

so by affine invariance {0} is the intersection of finitely many open subsets, and

is thus open. It follows that the topology is discrete and so k is not large. ■

THIS result can be improved slightly; in particular, we can relax the hypothesis

that the theory is stable, only requiring stability for certain kinds of formulae.

3.3 Local generics
GLOBAL stability theory is not available anymore, so we have to use a local

version – i.e., we have to look at a single formula, δ(x, y), and at definable sets

built using instances of it. Fix a group G definable in a structure M. Suppose

δ(x, y) is a formula such that δ(M ,b) ⊆G for all b ∈M.

Definition 3.3.1. — The formula δ(x, y) is affine invariant if for any a,b,c ∈G

there is b′ ∈G such that aδ(G ,b)+ c = δ(G ,b′).

LET Defδ(G) be the Boolean algebra of subsets of G defined by instances of δ.

Similarly, Sδ(G) is the set of complete δ-types. Notice that if δ is invariant, then

for any X which is δ-definable and a ∈G , aX is still δ-definable.

Definition 3.3.2. — A subset Y ⊆ G is generic if there are a1, . . . an ∈ G such

that a1Y ∪·· ·∪anY =G . A δ-type p is generic if it contains only (formulae that

define) generic definable sets.

THE following theorem is proven in [CPT20] as Theorem 2.3. Note that,

using Baldwin-Saxl, one can already deduce that G0
δ

is defined by finitely many

instances of δ and has finite index in G .

THEOREM 3.3.3. — Suppose that δ(x, y) is stable and affine invariant. Then

there is a finite index subgroup G0
δ
≤G which is δ-definable and minimal (in
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the sense that every other finite index δ-definable subgroup of G contains it).

Moreover, every left coset of G0
δ

contains a unique generic δ-type, and for every

δ-definable set X and every a ∈G exactly one of aG0
δ
∩X or aG0

δ
\ X is generic.

IF, moreover, G is δ-connected, i.e. G0
δ
= G , then there is a unique generic

δ-type p. If X ∈ Defδ(G), then exactly one of X or G \ X is generic.

NOW, restrict to definable fields. If K is a definable field in M, then there are

two ways to see it as a definable group, either (K ×, · ) or (K ,+). Thus, we will

say that a type p ∈ Sδ(K ) is additively generic if it is generic for (K ,+), and say

it is multiplicatively generic if it is generic for (K ×, · ).

PROPOSITION 3.3.4. — Suppose that K is an M-definable field. If δ(x, y) is

stable and affine invariant, then there is a unique additive generic p+ ∈ Sδ(K ), a

unique multiplicatively generic p× ∈ Sδ(K ), and they coincide (p+ = p×).

Proof. We first show that there is a unique additive generic, i.e. we show that

(K ,+) is δ-connected. Suppose H = G0
δ

is the connected component of the

identity: for any b ∈ K ×, the coset b−1H is δ-definable and has finite index, so

H ⊆ b−1H and so bH ⊆ H . It follows that H is a non-empty ideal of K , hence

H = K . Let p+ be the unique additive generic. If p× is a multiplicative generic

and p× 6= p+, there is a definable X ∈ Defδ(K ×) such that p× concentrates on X

but p+ does not. Write

K × ⊆
n⋃

i=1
ai X

and notice that each ai X is obtained from X through a definable automor-

phism of (K ,+), so they are not additively generic and so p+ does not con-

centrate on K ×, which is a contradiction. It follows that p+ = p× and it is

unique. ■

3.4 Virtually large fields with stable existential formu-
lae

SAY a field is virtually large if it has some finite extension which is large.

* By a construction of Srinivasan (see [Sri18]), not all virtually large fields are large.

WE aim to show the following:

THEOREM 3.4.1. — If K is virtually large and every existential Lring-formula is

stable, then K is separably closed.

IN order to do that, we will need to gain control on separably closed exten-

sions; that can be achieved through a celebrated theorem of Artin and Schreier:

THEOREM 3.4.2. — If some finite extension of K is separably closed, then K is

either separably closed or real closed.
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NOW, to the proof of 3.4.1. Suppose that K is virtually large and not separably

closed. Choose a large extension K ⊂ L′ of minimal degree: if L′ is separably

closed, then K must be real closed hence large, against minimality. Assume

then that L′ is not separably closed, so we obtain (by 2.4.16) a finite extension

L′ ⊆ L such that either the p-th power map L× → L× is not surjective for some

p 6= char(L) or the Artin-Schreier map L → L is not surjective. As L is a finite

extension of the large field L′, it is large. Fix P to be the image of either the

p-th power map or the Artin-Schreier map; in either case, P is an étale image

in L. Moreover, P is existentially definable in K and the same holds for +L ,×L :

K m ×K m → K m where m is the degree of K ⊂ L. Let

ϕ(x, y1, y2) = [y1 ∈ L×] ∧ [x ∈ (y1 ×L P ) +L y2]

which is affine invariant. Since P and its affine images are étale-open, every

instance ofϕ is étale-open. Fix P ′ ⊆ K such that P ′ is defined byϕ and P∩P ′ =∅
(for example a coset of P in the groups (L,+) or (L×,×)). Suppose ϕ is stable.

Then either P or P ′ is notϕ-generic, for example take P . Let P ′′ = P−c for some

c ∈ P . Then 0 ∈ P ′′ and, since P ′′ is also not generic, K × \ P ′′ must be so that

K × =
n⋃

i=1
ai (K × \ P ′′)

and thus {0} =⋂n
i=1 ai P ′′ is étale-open, against the largeness of L.
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Applications: large simple fields

Dipinte in queste rive

Son dell’umana gente

Le magnifiche sorti e progressive.

Qui mira e qui ti specchia,

Secol superbo e sciocco,

Che il calle insino allora

Dal risorto pensier segnato innanti

Abbandonasti, e volti addietro i passi,

Del ritornar ti vanti,

E proceder il chiami.

Giacomo Leopardi, La ginestra, o fiore del deserto
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FOR a second application, we again need some model-theoretic machinery.

In particular, a slightly larger class of theories, that of simple theories, which

– despite not enjoying all the properties of stable theories – are still relatively

tame. The main source for this chapter will be [PW21].

4.1 Simple groups and generics
FIX a complete L-theory T and a monster model M. With G we will always

mean a group definable (over the empty set) in M.

Definition 4.1.1. — Let ϕ(x, y) be an L-formula and b ∈ A|y | for some A ⊆M.

We sayϕ(x,b) divides over A if there is an A-indiscernible sequence {bn | n ∈ω},

with b0 = b, such that ⋂
n∈ω

ϕ(M,bn) =;.

A (partial) type p is then said to divide over A if some formula in p divides

over A. Non-dividing gives a notion of independence, similar to the one intro-

duced in the stable case; we say that a is indipendent from B over some set A,

and write a |̂ A B , if tp(a/B , A) does not divide over A. This notion does not

behave as well as the stable case unless we assume some further condition on

T :
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Definition 4.1.2. — A theory T is said to be simple if for any set A ⊆M and

complete type p there is A0 ⊆ A such that |A0| ≤ |T | and p does not divide over

A0.

IN simple theories, dividing agrees with forking, a good independence theo-

rem is available and many more interesting properties hold. We will, however,

only focus on some properties of such theories – in particular, on the fact that

there is a good notion of genericity available. From now on, assume T is simple.

Definition 4.1.3. — A definable subset X ⊆ G is f-generic if, for every g ∈ G ,

g X does not divide over ;. A type p concentrated on G (i.e., p implies the

formula defining G) is f-generic if every formula in p is f-generic.

BEING f-generic is vaguely related to what being generic meant in the previous

chapter. More precisely,

Definition 4.1.4. — A complete type p(x) ∈ S(A) that concentrates on G is said

to be generic if for any g ∈ G and any realization a of p that is independent

from g over A, we have g a |̂ ; A, g . A partial type is generic if it is contained

in some complete generic type.

WE can, as in the stable case, define an action of G on its partial types by

g ·π(x) := {ϕ(g−1 ·x) |ϕ(x) ∈π(x)}.

The following fact relates the two notions of genericity; it is Proposition 3.10 in

[Pil98].

THEOREM 4.1.5. — For a partial type π(x) over A concentrating on G, the

following are equivalent:

1. π is generic,

2. π is f-generic,

3. for every g ∈G, g ·π does not divide over A.

IN particular,

PROPOSITION 4.1.6. — Suppose X is not f-generic, then there are g1, . . . gk in G

such that
⋂k

j=1 g j X =;.

Proof. Let A be a set of parameters over which X =ϕ(M,b) is defined. By 4.1.5,

if X is not f-generic, then there is a translate g X , g ∈G , which divides over A.

In particular, there are finitely many b1, . . .bn such that bi ≡A b for every i and⋂n
i=1 gϕ(M,bi ) =;. But since A is a set over which X is defined, and bi ≡A b –

or equivalently, gϕ(M,bi ) is obtained from g X with an automorphism fixing A

– then gϕ(M,bi ) = g gi X for some gi ∈G . Hence, upon renaming g ′
i = g gi , we

obtain the necessary result. ■
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PROPOSITION 4.1.7. — An A-definable set X is f-generic if and only if it is

contained in an f-generic complete type over A.

Proof. One direction follows directly from the definition of f-generic type. On

the other hand, suppose X is f-generic. Then, again by 4.1.5, this is equivalent

to saying that X is contained in some complete generic type p(x) which can be

assumed1 to be over A. ■
NEXT, we consider a field K definable inM. Similarly to what happened in the

stable case, there are several ways something can be f-generic, depending on the

structure you consider. We will say that X ⊆ K is additively (multiplicatively)

f-generic if X (X ∩K ×) is f-generic for (K ,+) (for (K ×, · )). We already know

examples of f-generic sets: étale-open subsets. To see that, we first need to

recall some technical facts, the proofs of which can be found in [PW21].

FIRST, as a hint towards the usefulness of f-generics, we again don’t need to

keep in mind which reduct of the original structure we are considering.

PROPOSITION 4.1.8. — Let X ⊆ K be a definable set over A. Then X is an additive

f-generic if and only if it is a multiplicative f-generic. If a ∈ k and p(x) = tp(a/A),

then p is an additive f-generic if and only if it is a multiplicative f-generic.

AND similarly for tuples.

PROPOSITION 4.1.9. — Let a ∈ K n . Then p(x) = tp(a/A) is an f-generic type

of (K n ,+) if and only if it is an f-generic type of ((K ×)n , · ). In particular, X is

f-generic for K n if and only if X ∩ (K ×)n is f-generic for (K ×)n .

NOW, as a preliminary step, we show that étale images – and so étale-open

sets – are somehow generic in the sense of algebraic geometry. In other words,

they are Zariski dense.

PROPOSITION 4.1.10. — Suppose K is large, and X ⊆ K n is a non-empty étale

image. Then X is Zariski dense.

Proof. Suppose not, i.e. X ⊆V (K ) for some proper subvariety V (An . In par-

ticular, dimV < n. On the other hand, if f : W →An is the étale map defining

X , then W has dimension n and f −1(V ) is a closed subvariety of W containing

W (K ). As K is large, W (K ) is Zariski dense, hence dim f −1(V ) = n; however,

étale maps are finite-to-one, so dim f −1(V ) = dimV < n, a contradiction. ■
COROLLARY 4.1.11. — Suppose K is large and ; 6= X ⊆ K n is étale-open. Then

X is Zariski dense.

INTUITIVELY, Zariski dense sets should be big; and big sets should be f-generic

– think of it this way: if a set is not f-generic, then it is small enough that you

can translate it around and obtain several disjoint copies of it. This intuition

holds up to the scrutiny:

1See Lemma 3.3 in [Pil98].
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THEOREM 4.1.12. — Suppose K is large. Let X ⊆ K n be a definable, étale-open

subset. Then X is f-generic.

Proof. Suppose not. Then X ′ = X ∩ (K ×)n is not f-generic. We can assume

0̄ ∈ X , since étale-open subsets and f-generic subsets are affine invariant, and

moreover we should have g1X ′∩·· ·∩gk X ′ =; for some g1, . . . gk ∈G . In partic-

ular,

Y := g1X ∩·· ·∩ gk X ⊆ K n \ (K ×)n ,

so Y is not Zariski dense. However, since 0̄ ∈ Y , it is non-empty and étale-open,

and hence it should be Zariski dense. ■

4.2 Bounded fields
Definition 4.2.1. — A field K is said to be bounded if, for every n < ω, there

are only finitely many extensions of K of degree n inside K sep.

FOR some a = (a0, . . . an) ∈ K n+1, let

pa(x) = a0 +a1x +·· ·+an xn ∈ K [x].

Let

Ωn := {a ∈ K n+1 | pa is separable and irreducible}.

It is a definable subset of K n+1, on which we establish an equivalence relation-

ship:

a ∼n b ⇐⇒ K /(pa) ∼= K /(pb).

Through ∼n , we are encoding the information on separable extensions of K

in definable subsets of K n+1. In particular, as a consequence of the primitive

element theorem,

PROPOSITION 4.2.2. — K is bounded if and only if, for every n, there are only

finitely many ∼n-classes.

NOTE, moreover, that each ∼n-class is definable in K , since K /(pa) is uni-

formly interpretable in K . This allows us to combine topological techniques

and tools from simplicity to assess how big these classes are, and thus in partic-

ular how many of them there are.

4.3 Large simple groups are bounded
WE aim to show that, if K is large and simple, there are only finitely many

∼n-classes for each n <ω. This is where simplicity plays its role.

PROPOSITION 4.3.1. — Suppose T is simple, X is a definable set in K and ∼ is a

definable equivalence relation on X such that each class is f-generic. Then there

are only finitely many ∼-classes.
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Proof. Suppose not. Let c be a tuple of parameters over which X and ∼ can

be defined. Since X / ∼ is infinite, there is a class E and a canonical parameter

for E , e ∉ acl(c). Let θ(x,e,c) define E . Choose a sequence {ei | i <ω}, starting

in e, such that {θ(x,ei ,c) | i < ω} are pairwise inconsistent, and extract a c-

indiscernible sequence {ēi | i <ω} of realizations of tp(e/c). Then {(c, ēi ) | i <ω}

is an ;-indiscernible sequence that witnesses that θ(x,e,c) divides. ■

WE now focus on the set Ωn together with the relation ∼n . If we can show

that ∼n-classes are f-generic, then we are done; but now we have a tool at our

disposal, or rather, we have an example of f-generic sets: étale-open sets. It

can’t hurt to try.

PROPOSITION 4.3.2. — Suppose K is large. Then every ∼n-class is étale-open.

Proof. Fix a ∈Ωn and let α be a root of pa(x) in K sep. Choose some variables

(x0, . . . xn−1) and let

β(x̄) = x0 +αx1 +·· ·+xn−1α
n−1.

Similarly, denote by α1, . . .αn the K -conjugates of α and let

βi (x̄) = x0 +αi x1 +·· ·+xn−1α
n−1
i .

Now consider

Φ := {b ∈ K n | K (β(b)) = K (α)},

so that b ∈Φ if and only if there is a c ∼n a such that pc (β(b)) = 0. Since, more-

over,β(b) ∈ K (α) for any b ∈ K n , we have that b ∈Φ if and only if 1,β(b), . . .β(b)n−1

are K -linearly independent. In particular, Φ is Zariski open.

We now aim to produce a non-empty étale image around a in its ∼n-class.

Denote by e1, . . .en ∈Z[x̄] the symmetric polynomials defined by

ek (x̄) = ∑
1≤i1<···<ik≤n

xi1 · · ·xik ,

and let

G(b) := (−e1(β1(b), . . .βn(b)),e2(β1(b), . . .βn(b)), . . . (−1)nen(β1(b), . . .βn(b))

for any b ∈ K n . Note that we can rewrite G as a polynomial function G =
(G1, . . .Gn) where Gi ∈ K [x̄] and if b ∈Φ, then G(b) ∼n a. This is because pG(b)

has exactly β1(b), . . .βn(b) as roots.

Now,

G(0,1,0, . . .0) = (−e1(α1, . . .αn), . . . (−1)nen(α1, . . .αn)) = a.
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Moreover, we show that the Jacobian of G at (0,1,0, . . .0) is invertible – define

the following maps:

F (b) = (b0 +b1α1 +·· ·+bn−1α
n−1
1 , . . .b0 +b1αn +·· ·+bn−1α

n−1
n ),

E(b) = (e1(b), . . .en(b)),

D(b) = (−b0,b1,−b2, . . . (−1)nbn−1).

For any b ∈ V , we have G(b) = D(E(F (b))). This allows us to compute the

Jacobian of G : if we denote by p = (0,1,0, . . .0), then by the chain rule

JacG (p) = JacD (E(F (p))) JacE (F (p)) JacF (p).

However, both D and F are linear in b, so their Jacobians are constant. On

the one hand, |JacD | is either 1 or −1 (depending on n); on the other hand,

JacF is a Vandermonde matrix in α1, . . .αn , which are all distinct, and so it has

non-zero determinant. It remains to show that JacE (F (p)) is invertible, where

F (p) = (α1, . . .αn); however, |JacE (F (p))| is also a Vandermonde determinant of

the form
∏

1≤i< j≤n(αi −α j ) (see [LP02]), so it is non-zero as long as α1, . . .αn

are distinct.

Thus, the open subvariety U of An given by |JacG (x̄)| 6= 0 contains p, and

G : U →An gives an étale morphism. Since U (K )∩Φ 6= ; is Zariski open in K n ,

we have an open subvariety W such that W (K ) =U (K )∩Φ and G|W is still étale.

Let X =G(W (K )): then a ∈ X ⊆ [a]∼n . Since a is arbitrary, it follows that [a]∼n

is étale-open. ■

WE have now proven that we have a definable equivalence relation, ∼n , whose

classes are étale-open, thus f-generic. Under simplicity, this implies that there

are only finitely many of them.

COROLLARY 4.3.3. — If K is a large field, definable in a simple theory, then K is

bounded.
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Volo ancora, ma nelle tregue del sonno

il piede non più leggero

scivola via, una mano si aggrappa

alla grondaia che scappa

vorrei volando volare

e riempire di allegrie

le spine del buio.

Dacia Maraini, Ho sognato di volare
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WE go back to our original question. We now have a notion of topology

available on every k-variety over any field k. This topology in particular only

makes sense over large fields, so we restrict to this class. We can finally isolate

the fields whose definable sets – in the language of fields – admit a topological

description. We follow [WY21].

5.1 Éz fields
ÉZ fields arise as a topological form of model completeness for perfect fields.

If k is a field, recall the étale-open topology Ek on k, as introduced in the

previous chapters.

Definition 5.1.1. — A definable subset X ⊆ kn is éz if it can be written as a

finite union of definable étale-open subsets of Zariski closed subsets of kn .

Under the assumption of perfection (and largeness) of k, it is proven as

Theorem C in [WY21] that if X is éz, i.e. X = X1 ∪·· ·∪ X` for some definable

étale-open subsets Xi ⊆Vi (k) of closed subvarieties Vi ⊆An , then V1, . . .V` can

actually be chosen to be pairwise disjoint. As a consequence, if X is definable

and decomposed in étale-open subsets Xi ⊆Vi (k) such that Vi (k)∩V j (k) =;
for i 6= j , then each Xi is already definable, so this request can be dropped from

the definition.1

1It is, in fact, what will be done in 5.3.
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Definition 5.1.2. — A field k is éz if it is large and every definable subset is éz.

QUANTIFIER free definable subsets of kn are constructible, and Zariski open

sets are étale-open. This means that algebraically closed fields are éz; but

we can’t go much farther, since quantifier elimination in the ring language

is equivalent to being algebraically closed (or finite) for any division ring2.

A general strategy to obtain éz fields is then to isolate fields with quantifier

elimination in some expanded language and turn to topological considerations

on the sets defined by this expanded language. This is the strategy deployed in

5.3.

IN general, éz fields are not necessarily tame (for example,Q((t )) is éz, despite

inheriting some of the awful properties of Q), however they admit a good

geometric dimension theory (see Theorem E in [WY21], and [Dri] for generalities

on dimension in algebraically bounded fields).

THEOREM 5.1.3. — Suppose k is éz. Then k is algebraically bounded3.

WE now look at certain henselian valued fields that admit quantifier elimi-

nation in a multi-sorted language. We expect them to end up being éz. As an

aside, recall that henselian valued fields are large, so one of the requests of the

definition is already accounted for.

5.2 The étale-open topology over henselian valued fields
BEFORE getting into the specific examples, we will need to know what hap-

pens to the étale-open topology when considered over an henselian valued

field.

RECALL that a V-topology on k (see Appendix B) is said to be t-henselian if

for any n there is an open neighbourhood U of 0 such that, if a0, . . . an ∈ U ,

then xn+2 +xn+1 +an xn +·· ·+a1x +a0 has a root in k. Any valuation topology

coming from an henselian valuation is t-henselian.

THEOREM 5.2.1. — Suppose that k is not separably closed and admits a t-

henselian topology; then the étale-open system of topologies is induced by the

t-henselian topology.

* The system Ek being induced by a t-henselian topology is actually equivalent to k

being not separably closed and t-henselian, see Theorem B in [Joh+20].

Proof. We show it in several steps.

2See [Ros78] for the proof of the equivalence.
3A field k is said to be algebraically bounded if for every definable set X ⊆ km ×k there are

polynomials f1, . . . f` ∈ k[x1, . . . xm , t ] such that if the fiber Xa = {b ∈ k | (a,b) ∈ X } over some
a ∈ km is finite, then Xa ⊆ {b ∈ k | fi (a,b) = 0} for some i = 1, . . .` such that fi (a, t) is not
constantly zero.
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Step one: if τ is the t-henselian topology on k, and f : V → W is an étale

maps of varieties, then f is τ-open.

Recall that t-henselianity implies the implicit function theorem B.2.13. In

particular, if we have a polynomial map f : kn+m → km which has a zero (a,b)

such that | ∂ fi
∂y j

(a,b)i , j≤m | 6= 0, then there are τ-open neighbourhoods of 0, U ⊆
kn and V ⊆ km , such that for all a′ ∈ a +U there is a unique b′ ∈ V such that

f (a′,b′) = 0, and moreover the map km → a +U given by a′ 7→ b′ is continuous.

Moreover, from the discussion around 2.2.1 we know that if f : V →W is étale,

we can – locally around a k-point – assume that it is a “projection”

f : V (g1, . . . gh , f1, . . . f`) ⊆An+`→V (g1, . . . gh) ⊆An 4,

with the Jacobian of f1, . . . f` which is invertible at the point. Then by the im-

plicit function theorem we can find a τ-open set U ⊆ kn and a τ-continuous

function h : U → k` such that f (x,h(x)) = 0 for every x ∈ U . In particular,

f |(U×k`)∩V (g1,...gh , f1,... f`) maps (U×k`)∩V (g1, . . . gh , f1, . . . f`) τ-homeomorphically5

to U ∩V (g1, . . . g`). It follows that f is a τ-open map.

As a consequence of this, τ refines the étale-open topology on any k-variety.

We need to show the other refinement.

Step two: suppose τ0 is an affine invariant topology on k and τ1 is a non-

discrete field topology on k. If some non-empty X ⊆ k is τ0-open and τ1-

bounded, then τ1 ⊆ τ0.

In fact, supposing 0 ∈ X , if U ∈ τ1 is non-empty, for every b ∈U we can find

ab ∈ k× such that ab X ⊆U −b. By affine invariance, ab X +b ⊆U is τ0-open,

hence U =⋃
b∈U (ab X +b) is τ0-open.

Step three: If i : A1 → P1 is the open immersion x 7→ (x : 1), and τ is a V-

topology on k, then X ⊆A1(k) is τ-bounded if and only if (1 : 0) is not in the

closure of i (X ).

In fact, X is τ-bounded if and only if 0 ∉ (X \ {0})−1 if and only if (1 : 0) ∉ i (X ).

Step four: suppose that S is a system of topologies on k and τ is a V-topology

on k. Suppose some non-empty S-open U ⊆A1(k) is not τ-dense in A1(k),

then S refines the system induced by τ.

It is enough to work onA1: because of 2.4.11, we need only work over affine

space, and since τ is a field topology, we only care about dimension 1. We need

to produce, by step three, a subset which is S-open and τ-bounded. Suppose

a ∉U and let g : P1(k) → P1(k) be the fractional transformation x 7→ 1
x−a . In

particular, f (U ) is still S-open and f (a) =∞∉ f (U ). Then f (U ) is τ-bounded,

hence we finish.

Step five: suppose τ is a V-topology on k and there is f ∈ k[x] such that f ′ 6≡ 0

4More precisely, that it is induced by the quotient map from Speck[x1, . . . xn]/(g1, . . . gh) to
Speck[x1, . . . xn+`]/(g1, . . . gh , f1, . . . f`).

5The inverse is precisely x 7→ (x,h(x)).
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and f (A1(k)) is not τ-dense inA1(k). Then the τ is refined by the étale-open

topology.

Let U = D( f ′): then f : U →A1 is étale and f (U (k)) is not dense inA1(k), so

we finish by step four.

Step six: we need to exhibit such an f .

Since k 6= ksep, there is a separable polynomial f ∈ k[x] with no zeroes in k.

By [ZP78], theorem 7.5, if f has no zeroes in k, then 0 is not a τ-limit point for

f (A1(k)), so f (A1(k)) is not τ-dense, and hence we conclude that Ek refines τ

on every k-variety. ■

THIS shows, in particular, that in the case of henselian valued fields, the

valuation topology and the étale-open topology coincide.

5.3 The RV-language
FIX a valued field (k, v) and call R its residue field and V its value group.

We aim to achieve elimination of the field quantifier through a language that,

somehow, encodes the “relevant” information of elements of a valued field.

Throughout this section, keep in mind the following example: for any field R

and value group V , build the field of Hahn series k = R((tV )). Elements of k

can explicitly be written as formal power series in t , with coefficients in R and

exponents in V , whose support is well-ordered. The most intuitive example

is when V = Z, so that we write k = R((t)): if you think of these power series

as Taylor expansions of functions at a point, then the leading terms structure,

as defined below, is essentially identifying “functions” up to higher6 orders of

their expansion.

Definition 5.3.1. — Let δ≥ 0 be an element of the value group V . We denote

by

RVδ := k×/(1+mδ)∪ {∞},

together with its quotient map rvδ : k → RVδ, where rvδ(0) =∞, the leading

terms structure of order δ.

As an aside, we can induce an addition structure on RVδ. In theδ= 0 case, this

is achieved by noting the following: since 1+m⊆ ker(v), then v factors through

RV0 and thus we can look at ker(v) ⊆ RV0. The former is O×/(1+m) ∼= R× (as a

group), and hence we obtain a short exact sequence

1 → R× → RV0 →V → 0,

where the maps are the embedding R× → RV0 and the valuation RV0 →V . This

allows us to “push” the additive structure from R× to RV0; we however only

6Where “higher” can be defined using the valuation.
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obtain a relation ⊕0 on RV3
0, which fails to be a functional relation in many

cases. More generally,

Definition 5.3.2. — Let δ≥ 0. Then we say ⊕δ(a,b,c) if and only if

∃x, y, z [rvδ(x) = a ∧ rvδ(y) = b ∧ rvδ(z) = c ∧x + y = z].

MOREOVER, if γ ≤ δ then 1+mδ ⊆ 1+mγ and thus we have a natural map

rvδ,γ : RVδ→ RVγ.

FROM now on, whenever we say “the RV-language” we shall mean a multi-

sorted language L∆ = (k,RVδ | δ ∈ ∆), for a suitable choice of ∆ ⊆ [0,∞) ⊆ V ,

made up by

1. the ring language on the first sort,

2. the group language together with the relation ⊕δ, for each δ ∈∆, on the

sort RVδ,

3. the function rvδ : k → RVδ for each δ ∈∆,

4. the function rvδ,γ : RVδ→ RVγ for each δ≥ γ ∈∆.

WE are now ready to prove that eliminating the field quantifier in the RV-

language implies being éz.

THEOREM 5.3.3. — Suppose that (k, v) is a perfect7 valued field that admits

elimination of the field quantifier in the RV-language. Then k is éz.

* The δ1, . . .δ` come from ∆, for a suitable choice of ∆. For example, in the henselian

case, with characteristic zero, then one can choose δ1 = ·· · = δ` = 0.

NOTE that, from the elimination of the field quantifier, it follows that if X ⊆ kn

is definable, then there are a definable

E ⊆ RVδ1 × . . .RVδ`

and polynomials f1, . . . f` ∈ k[x1, . . . xn] such that

X = {x̄ ∈ kn | (rvδ1 ( f1(x̄)), . . . rvδ`( f`(x̄))) ∈ E }.

WE shall show that, for any such definable E , the set

U = {x̄ ∈ kn | (rvδ1 ( f1(x̄)), . . . rvδ`( f`(x̄))) ∈ E }

is éz, and thus every definable set will be éz. Recall that, due to Theorem C in

[WY21], it is enough to show that definable sets decompose as finite unions of

7Meaning that the base field is perfect.
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étale-open (hence, in this case, valuation open) subsets of Zariski closed sets:

under the perfection hypothesis, there is no need to worry about definability of

the components of the union.

TO see that, we first look at the ` = 1 case. Fix δ ≥ 0, E ⊆ RVδ and f ∈
k[x1, . . . xn] and define U as above. Then the set

U0 = {z ∈ k× | rvδ(z) ∈ E }

is valuation open, since

U0 =
⋃

z∈U0

Bv(z)+δ(z).

We can now reconstruct U from U0 using the function Φ : kn \ V ( f ) → k×

defined by Φ(x̄) = f (x̄). Since Φ is valuation continuous, we have that U =
V ( f )∪Φ−1(U0) is the union of a Zariski closed set and a valuation open (hence

étale-open) set. In particular, U is éz.

WE now turn to the higher “dimensional” cases. Before attacking the general

case, it might be instructive to look at the ` = 2 case. Fix δ1,δ2 ≥ 0, f1, f2 ∈
k[x1, . . . xn] and E ⊆ RVδ1 ×RVδ2 . Define U as above, and assume (∞,∞) ∈ E . If

x̄ ∈U , then we have four cases:

1. x̄ ∈V ( f1, f2),

2. x̄ ∈V ( f1) but x̄ ∉V ( f2): then x̄ belongs to the set⋃
(∞,λ)∈E ,λ6=∞

{x̄ ∈ kn | rvδ2 ( f2(x̄)) =λ},

3. x̄ ∈V ( f2) but x̄ ∉V ( f1): then x̄ belongs to the set⋃
(λ,∞)∈E ,λ6=∞

{x̄ ∈ kn | rvδ1 ( f1(x̄)) =λ},

4. x̄ is not in V ( f1) and V ( f2), then x̄ belongs to the set⋃
(λ,γ)∈E ,λ,γ6=∞

{x̄ ∈ kn | rvδ1 ( f1(x̄)) =λ}∩ {x̄ ∈ kn | rvδ1 ( f1(x̄)) = γ}.

In particular, U decomposes as the union of

1. V ( f1, f2),

2. V ( f1)∩D( f2)∩⋃
(∞,λ)∈E ,λ6=∞{x̄ ∈ kn | rvδ2 ( f2(x̄)) =λ},

3. V ( f2)∩D( f1)∩⋃
(λ,∞)∈E ,λ6=∞{x̄ ∈ kn | rvδ1 ( f1(x̄)) =λ},

4. D( f1)∩D( f2)∩⋃
(λ,γ)∈E ,λ,γ6=∞[{x̄ ∈ kn | rvδ1 ( f1(x̄)) =λ}∩

∩ {x̄ ∈ kn | rvδ1 ( f1(x̄)) = γ}],
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where 1 is Zariski closed, 2−3 are étale-open subsets of the Zariski closed sets

V ( f1) and V ( f2) and 4 is étale-open in kn . It follows that U is éz.

FOLLOWING this principle, we decompose U when `≥ 3. We have

1. V ( f1, . . . f`),

2. D( f1)∩·· ·∩D( f`)∩⋃
γ̄∈E , ∀i γi 6=∞

⋂`
i=1{x̄ ∈ kn | rvδi ( fi (x̄)) = γi },

3. for any choice of I ∈ 2`,

V ( fi | i ∈ I )∩D( fi | i ∉ I ) ∩
∩ ⋃
γ̄∈E , ∀i∉I , γi 6=∞

⋂
i∉I

{x̄ ∈ kn | rvδi ( fi (x̄)) = γi }.

Note that some of these unions might be empty, depending on whether ∞
appears as a coordinate in E or not. Each of these sets is éz, and hence U is éz.

Again, if (∞, . . .∞) ∉ E we ought to omit 1.

5.4 Some examples
WE survey some examples of valued fields to which the result of the previ-

ous section applies. First of all, the characteristic zero case: this is [Fle09],

Proposition 4.3.

PROPOSITION 5.4.1. — Suppose (k, v) is henselian, char(k) = 0. Then k admits

elimination of the field quantifier in the RV-language (where∆= {0} if char(R) =
0 and ∆= {v(pn) | n <ω} if char(R) = p > 0).

IN equicharacteristic p > 0, one does not obtain relative quantifier elimina-

tion in the RV-language. Some more hypotheses are required to ensure that the

model theory is tractable.

Definition 5.4.2. — Let k be a valued field with valuation v , residue field R

and value group V . We say that (k, v) is Kaplansky if either char(R) = 0 or

char(R) = p > 0 and,

1. R is perfect,

2. R admits no finite separable extension R ′ such that p divides [R ′ : R],

3. pV =V .

A valued field (k, v) is algebraically maximal if it admits no immediate alge-

braic extension.

ALGEBRAICALLY maximal Kaplansky fields are perfect and henselian, hence

large. Moreover, they admit quantifier elimination in the RV-language (some-

thing which is not true in general for henselian fields in equicharacteristic

p > 0). This is [HH18], Corollary A.3.
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PROPOSITION 5.4.3. — Suppose (k, v) is algebraically maximal and Kaplansky.

Then k admits elimination of the field quantifier in the RV-language (where

∆= {0}).

IN particular,

COROLLARY 5.4.4. — The following fields are éz:

1. (k, v) henselian, char(k) = 0,

2. (k, v) algebraically maximal and Kaplansky.
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EACH story requires a proper world-building, a cosmogony of the world your

adventures will take place in. This appendix will try to sketch out, briefly, the

geography of the vast land of modern algebraic geometry and the linguistics

of scheme theory. A warning: these pages don’t tell the full story, and aren’t

trying to do so; I owe my very limited knowledge of algebraic geometry to

the wonderful [GW10], and I encourage you to refer to it to clear any of the

inevitable obscure points of this exposition.

A.1 Definitions and basic results
SOME preliminary knowledge of sheaves will be assumed. The salient points

can be found in Görtz-Wedhorn.

Definition A.1.1. — A locally ringed space is the datum of a topological space

X together with a sheaf OX of rings such that, for each p ∈ X , the stalk OX ,p is a

local ring (called the local ring at p). Its maximal ideal will be denoted by mp

and the quotient κ(p) := OX ,p

mp
will be called the residue field at p.

AS an aside, notice that if you have a section f ∈OX (U ), then f “takes values”

on U in the following sense: to each p ∈ U , we can consider fp ∈ OX ,p and

define

f (p) := ( fp mod. mp ) ∈ κ(p).

As you can see, this does not define functions in a meaningful way; if anything,

it defines multi-valued functions. But nevertheless it is enough to be able to

say “ f ∈OX (U ) vanishes at p ∈U ” and similar expressions.

ONCE you have locally ringed spaces, you need morphisms; since such a

datum combines together topological and algebraic information, morphisms

should preserve both.

Definition A.1.2. — A morphism of locally ringed spaces (X ,OX ) → (Y ,OY ) is

the datum of two morphisms ( f , f [), where f : X → Y is a continuous map and

f [ :OY → f∗OX is a morphism of sheaves of rings, such that the adjoint map

to f [, f ] : f −1OY →OX , induces a morphism of local rings at the level of stalks,
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i.e. f ]p :OY , f (p) →OX ,p sends the maximal ideal to the maximal ideal.

THIS definition is a bit of a mouthful, but the gist is that f preserves the

topological information, whereas f [ – or actually its evil twin, f ] – preserves

the local ring structure that lives hidden in the stalks of the sheaf.

IF, like me, you started your journey in algebraic geometry in the comforting

port of “classical” algebraic geometry, you already have a locally ringed space

available at the back of your mind. Indeed, if you take an affine variety X over

an algebraically closed field k and pick a point p ∈ X , you can consider its local

ring OX ,p whose maximal ideal is exactly that of regular functions that vanish

at p. In this case, κ(p) ∼= k.

THE canonical example of locally ringed space is the spectrum of a ring. If A

is a commutative ring, then Spec(A) is the topological spaces whose underlying

set is the set of prime ideals of A and the topology has, as closed sets, precisely

the subsets of Spec(A) of the form

V (M) = {p ∈ Spec(A) | M ⊆ p}

for some M ⊆ A. For any f ∈ A, let D( f ) = {p ∈ Spec(A) | f ∉ p}. We can now

assign a sheaf of rings to X = Spec(A) by declaring that OX (D( f )) = A f for any

f ∈ A; one can check that, since the sets of the form D( f ) (the principal open

subsets) form a basis for the open subsets of X , this data is enough to build a

sheaf on X . In particular, OX ,p = Ap and hence this sheaf turns X into a locally

ringed space. We shall call this the structure sheaf on Spec(A).

THE equality in the last sentence of the example is the first instance of a

possible confusion that might ensue later on; since the points of Spec(A) are

the prime ideals of A, the point p has two distinct roles in the equality: on the

left, it is a point of Spec(A); on the right, it is a prime ideal p ⊆ A.

FROM this canonical example we build our first definition of scheme. Notice

that, once we have given objects and morphisms, we can consider the category

of locally ringed spaces and we thus get a notion of “isomorphism” in that

category.

Definition A.1.3. — An affine scheme is a locally ringed space isomorphic to

the spectrum of a ring together with its structure sheaf. Denote by (Aff) the

category of affine schemes (where the morphisms are those of locally ringed

spaces).

A short, but important, remark: a map between rings A → B induces a mor-

phism of affine schemes SpecB → Spec A by taking preimages of prime ideals.

This identifies a (contravariant) functor from the category (Comm) of com-

mutative rings to (Aff) which is actually an (anti)equivalence of categories. In
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particular, if X = Spec A and Y = SpecB , then

Hom(Aff)(X ,Y ) ∼= Hom(Comm)(B , A).

THIS allows us to consider an important geometric object under this new

light; if A is a ring, let

An
R = SpecR[t1, . . . tn]

be the n-dimensional affine space over R. If it is clear from the context, the

subscript R is dropped and I will write An . Many more examples could be

introduced, but we shall not need them right now because these couple of

definitions already enable us to introduce a very general object.

Definition A.1.4. — A scheme is a locally ringed space (X ,OX ) that admits an

open covering

X = ⋃
i∈I

Xi

such that, for each i ∈ I , (Xi ,OX |Xi ) is an affine scheme. A morphism of

schemes is a morphism of locally ringed spaces, so we get a category (Sch).

THE remark we made above carries over with some restrictions. Suppose you

have schemes (X ,OX ) and (Spec A,OSpec A), then

Hom(Sch)(X ,Spec A) ∼= Hom(Comm)(A,OX (X )).

FOR most of the time, we will need to work in a “geometric” setting, i.e. in

some sense over a field. This can be made precise in the following way.

Definition A.1.5. — A scheme over S, where S is another scheme, is a mor-

phism of schemes X → S. This can be turned into a category (Sch/S) by saying

that a morphism of schemes over S is a morphism of schemes X → Y such that

X Y

S

commutes. If S = Spec(R), we also say X is a scheme over R, or an R-scheme.

WE are one step closer to varieties in a very concrete, geometric sense. We

want to recover some of the properties that “classical” varieties had, so we

introduce some terminology.

Definition A.1.6. — If k is a field and X → Speck is a k-scheme, we say that

X is locally of finite type if there is an affine open cover X = ⋃
i∈I Xi such

that, for each i ∈ I , Xi = Spec Ai with Ai a finitely generated k-algebra. If (the
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underlying topological space of) X is also compact (or, as algebraic geometers

seem to be very fond of saying, “quasicompact”), we say X is of finite type.

THE requirement of being “locally of finite type” is akin to working with man-

ifolds that are locally homeomorphic to finite-dimensional Euclidean spaces.

A.1.1 Fiber products and base change

WE need a final ingredient, whose name sometimes makes people flinch:

fiber products. In the classical case, fiber products are built through fiber

products of sets: if f : X → Y and g : Z → Y are maps, then one can build

X ×Y Z by taking

X ×Y Z = {(x, z) ∈ X ×Z | f (x) = g (z)}.

One can show that if X ,Y , Z are affine varieties and f , g are morphisms, then

X ×Y Z is again a variety, although it might end up not being affine (it is, in

general, quasi-projective). The issue presents itself in the general case and is

best explored in the following section.

FOR now, we sketch out how the fiber product is built when X ,Y , Z are affine

schemes.

Definition A.1.7. — Let X → Y , Z → Y be schemes over Y . The fiber product

is the datum of a scheme X ×Y Z together with morphisms p : X ×Y Z → X ,

q : X ×Y Z → Z that make this diagram commute:

X ×Y Z X

Z Y

p

q

y

and such that they satisfy the following universal property: if W is another

scheme with morphisms ψ : W → X ,ϕ : W → Z that make the diagram

W X

Z Y

ψ

ϕ

commute, then there is a morphism η : W → X ×Y Z such that p ◦η=ψ and

q ◦η=ϕ.

DUE to its universal property, the fiber product is precisely the product in

the category (Sch/Y ). Its existence is not immediate: suppose we had affine
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schemes

X = Spec A → Z = SpecR,Y = SpecB → Z = SpecR,

then the affine scheme W = Spec(A ⊗R B), together with the morphisms of

affine schemes induced by the ring morphisms A → A⊗R B , B → A⊗R B , satisfies

the universal property. One can use this fact to deduce the more general one,

THEOREM A.1.8. — The fiber product of Y -schemes exists for any scheme Y .

TAKE the particular case where X → Y is an Y -scheme and we have a mor-

phism Y ′ → Y . We can form the fiber product X ×Y Y ′, which is then (besides

being an Y -scheme) an Y ′-scheme called the base change of X by the mor-

phism Y ′ → Y . If f : X → Z is a morphism of Y -schemes, the morphism

f ×Y idY ′ : X ×Y Y ′ → Z ×Y Y ′ is a morphism of Y ′-schemes, also called base

change. This allows to formalize the idea of changing base field for a k-

scheme: if k → k ′ is a field extension and X → Speck is a k-scheme, then

Xk ′ = X ×Speck Speck ′ is the base change of X to k.

FINALLY, we introduce the notion of separated k-scheme. Fix a k-scheme X .

Definition A.1.9. — The diagonal morphism of X is the morphism of k-

schemes

∆X /k = (idX , idX ) : X → X ×k X .

TO motivate what will follow, recall that for a topological space X being

Hausdorff is equivalent to the diagonal being closed in X 2. Schemes will not, in

general, be Hausdorff, but we can identify those schemes who are close enough.

Definition A.1.10. — A k-scheme X is said to be separated if the diagonal

morphism ∆X /k is a closed immersion, i.e. the continuous function maps X

homeomorphically to a closed subset of X ×k X and the sheaf morphism

∆[X /k :OX×k X → (∆X /k )∗OX

is surjective.

A.1.2 k-varieties and rational points

WE have all the necessary ingredients to introduce a more familiar notion

(although the identification with “classical” notions will be somehow tricky).

Definition A.1.11. — A k-scheme X → Speck is said to be a k-variety if it is

separated and of finite type. Denote the category of k-varieties by (Vark ). A

k-variety that is also an affine scheme is an affine k-variety. Their category is

denoted by (AffVark ).

VARIETIES enjoy important closure properties.
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PROPOSITION A.1.12. — The fiber product of k-varieties over a k-variety is a

k-variety.

AT this point, one could wonder what has happened to our intuition of

“varieties” as sets of common zeroes of polynomials in affine or projective

space. Given a variety in this sense, defined by polynomials with coefficients

from a field k, one could magick out a k-variety using, as the sheaf of rings,

precisely the rings of regular functions on the variety; the viceversa is generally

not true. Two more properties are required: that the scheme be reduced1 and

irreducible. Under these two constraints, the categories of “classical varieties”

(sometimes called prevarieties, for example in [GW10]) and k-varieties are

equivalent.

BUT despite all this, the questions still stands: what happened to the points?

We might want to ask about points with “coordinates” in a larger field, but we

don’t have an obvious notion of coordinates available. Schemes are big, compli-

cated objects: take for example SpecZ. It contains several “closed” points, the

prime ideals of the form (p) for p 6= 0: for all these, {(p)} = {(p)}. But the space

is not T1: the point (0) is not only not closed, but actually {(0)} = SpecZ. We

call such a point generic, and all the other points are its specializations. Even

if we restrict to k-varieties – instead of general schemes – things can get messy.

Nevertheless, we recover the notion of points with “coordinates” in a certain

field.

Definition A.1.13. — Suppose X is a k-variety. If k ⊆ K is a field extension,

then SpecK is a k-scheme and we can consider the set of morphisms (in the

category of k-schemes) from SpecK to X . Denote it by

X (K ) = Homk (SpecK , X )

and call it the set of K -valued points of X .

IN the case where k is algebraically closed, k-valued points x : Speck → X

identify closed points of X and establish a bijection between X (k) and the

closed points of X . If X is reduced and irreducible, this is a bijection between

X (k) and the associated “classical” variety.

THIS definition may seem weird at first, so a sanity check is due: take affine

n-spaceAn
k , then

An
k (k) = Homk (Speck,An

k ) ∼= Hom(Comm)(k[t1, . . . tn],k) ∼= kn ,

where the latter bijection is given by ϕ 7→ (ϕ(t1), . . .ϕ(tn)).

1Reduced will be defined later on; if you are familiar with classical algebraic varieties, the
point is that we want to avoid nilpotents in the sections of the sheaf.
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NOW, consider a k-variety X → Speck. For any of its points x ∈ X , consider

an affine open neighbourhood U = Spec A so that x ∈ U corresponds to the

prime ideal p ⊆ A. We have a natural morphism A → Ap = OU ,x = OX ,x , that

gives rise to a morphism of schemes SpecOX ,x → Spec A =U ⊆ X . The quotient

map OX ,x → κ(x) induces a morphism of schemes Specκ(x) → SpecOX ,x , so

we get a chain of morphisms

Specκ(x) → SpecOX ,x → X → Speck

that, at the ring level, induces a field extension k → κ(x).

THIS field extension encodes a lot of information about the point x.

PROPOSITION A.1.14. — The point x is closed if and only if k → κ(x) is a finite

extension.

MOREOVER, it allows us to say that a point is rational if the field extension

k → κ(x) is an isomorphism.

IF k is algebraically closed, all closed points are k-rational, so we get back

the idea that closed points of k-varieties that are reduced and irreducible over

an algebraically closed field are precisely the good ol’ tuples of elements of the

field satisfying certain polynomial relations.

THIS notion somehow clashes with the notion of k-valued points defined

above, in that they both seem to concretize the idea of point with “coordinates”

in k. However, this is not a real clash – the assignment (x : Speck → X ) 7→ x

gives a bijection between X (k) and the k-rational points of X , so we will more

often than not identify the two notions.

A.1.3 Subschemes and immersions

THE notion of “open” subscheme will be rather straightforward; as expected,

the structure sheaf behaves nicely when we try to restrict it to open sets.

Definition A.1.15. — Suppose (X ,OX ) is a scheme and U ⊆ X is an open subset.

Then the locally ringed space (U ,OX |U ) is called an open subscheme of X .

NOW, technically we still need to show that (U ,OX |U ) is not any locally ringed

space, but a scheme.

LEMMA A.1.16. — (U ,OX |U ) is a scheme. If X is affine, so is U .

Proof. By definition of scheme, X =⋃
i∈I Xi where each Xi is an affine scheme.

Moreover, each Xi has a basis of its topology given by principal open sets

that are themselves affine schemes2; in particular, U itself is covered by affine

schemes and is thus a scheme. ■
2The image you should have in mind is thatA1

k \ {(0)} is isomorphic to the hyperbole in the
plane.

65



chapter A

NOTICE that the inclusion map i : U ,→ X induces a morphism of sheaves in

the following way: for any open V ⊆ X , we have a map

OX (V ) →OX (V ∩U ) =OX |U (i−1(V )) = j∗OX |U (V )

and so we get a morphism i [ :OX → i∗OX |U of sheaves. In particular, (i , i [) is a

morphism of schemes U → X . This clears the way for a more general notion,

Definition A.1.17. — A morphism i : X → Y of schemes is an open immersion

if the continuous map is an homeomorphism X
∼−→ i (X ) ⊆ Y where i (X ) is

open in Y and the sheaf morphism i [ : OX → i∗OY induces a sheaf isomor-

phism OY |i (X )
∼= i∗OX .

ON the other hand, closed subschemes are slightly harder to work with. If

we restrict ourselves to an affine scheme X = Spec A, then the “ideal” (pun

not intended) closed subscheme is something of the form Spec A/a, where a is

some ideal in A, since it is homeomorphic to the closed subspace V (a) ⊆ Spec A.

Definition A.1.18. — If (X ,OX ) is a scheme, a subsheaf I⊆OX is called a sheaf

of ideals if I(U ) is an ideal in OX (U ) for every open U ⊆ X . In this case, the

presheaf U 7→ OX (U )/I(U ) can be sheafified to a sheaf called the quotient

sheaf.

SINCE we want closed subschemes to be essentially of the form Spec A/a,

a good starting point would be that their sheaves be isomorphic to quotient

sheaves of the form we have just defined.

Definition A.1.19. — If (X ,OX ) is a scheme, a closed subscheme is given by a

closed subset j : Z ,→ X and a sheaf OZ on Z such that

1. (Z ,OZ ) is a scheme,

2. j∗OZ is isomorphic to a quotient sheaf OX /I for some sheaf of ideals

I⊆OX .

THIS definition, while slightly miraculous, once again clears the way for a

generalization. Notice that there is a canonical surjective projection OX →
OX /I.

Definition A.1.20. — A morphism j : Z → X of schemes is called a closed

immersion if the continuous map is a homeomorphism Z
∼−→ j (Z ) ⊆ X , where

j (Z ) is closed in X , and the sheaf morphism j [ :OX → j∗OZ is surjective.

THIS recovers our intuition, in that sets of the form Spec A/a should be exactly

the closed subschemes of Spec A.
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THEOREM A.1.21. — Let X = Spec A be affine. There is a bijective correspon-

dence between the set of ideals of A and the closed subschemes of X , given by

a 7→V (a).

FOR the sake of completeness, there is a more general notion of subscheme

and immersion.

Definition A.1.22. — Let (X ,OX ) be a scheme. A subscheme of X is a scheme

(Y ,OY ) such that

1. Y is locally closed in X ,

2. if U = X \ (Y \ Y ), then Y is a closed subscheme of U .

The sinister open subscheme U is precisely the biggest open subset of X in

which Y is closed. An immersion i : X → Y is a morphism of schemes such

that

1. the continuous map is an homeomorphism between X and i (X ) ⊆ X

which is locally closed,

2. for all x ∈ X , the morphism of local rings i ]x :OY ,i (x) →OX ,x is surjective.

IF we restrict to k-schemes of finite type, we get that all subschemes are again

of finite type over k; moreover,

THEOREM A.1.23. — Being an open or closed immersion is local on the target

(i.e., it can be checked on the preimages of an open cover of the target) and closed

under composition.

BY the way, this allows to reintroduce familiar objects from classical algebraic

geometry.

Definition A.1.24. — The projective space of dimension n over a ring R is

obtained by gluing n +1 copies of affine spaceAn
R . We denote it by Pn

R .

PROJECTIVE space has some interesting properties (for example, OPn
R

(Pn
R ) ∼=

R), but more importantly it allows us to recover the classical notions of projec-

tive and quasi-projective variety.

Definition A.1.25. — A projective k-variety is a k-variety together with a closed

immersion into Pn
k . A quasi-projective k-variety is a k-variety together with

an immersion into Pn
k .

A.2 Smoothness
A.2.1 Commutative algebra interlude: differentials

LET ϕ : R → S be a ring map and suppose M is a S-module. What follows

mostly comes from either [Jon] or [Gro64b].
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Definition A.2.1. — An R-derivation into M is a map D : S → M that is additive,

zero on ϕ(R) and satisfies D(ab) = aD(b)+bD(a).

CONSIDER the S-module DerR (S, M) of all R-derivations on M . The associa-

tion M 7→ DerR (S, M) is actually functorial, acting on morphisms by

(α : M → N ) 7→ (α◦D : R → N ).

THERE is a map of free S-modules⊕
(a,b)∈S2

S[(a,b)]⊕ ⊕
( f ,g )∈S2

S[( f , g )]⊕⊕
r∈R

S[r ] →⊕
a∈S

S[a]

defined by

[(a,b)] 7→ [a +b]− [a]− [b], [( f , g )] 7→ [ f g ]− f [g ]− g [ f ], [r ] 7→ [ϕ(r )]

and we denote by ΩS/R its cokernel. The quotient map d : S →ΩS/R will map

a 7→ d a = [a]. In particular, d is a derivation.

Definition A.2.2. — The pair (ΩS/R ,d) is called the module of differentials.

THIS is usually called the module “of Kähler differentials”. Unless confusion

ensues, I will refrain from using this name, due to Erich Kähler’s problem-

atic history as a Nazi supporter during WWII and as a Third Reich apologist

afterwards.

THE module of differentials satisfies an universal property, namely that

HomS(ΩS/R , M) → DerR (S, M),α 7→α◦d

is an isomorphism of functors.

SUPPOSE now that R → S is a ring map, so that S is an R-algebra.

Definition A.2.3. — We say that S is formally smooth over R if for every com-

mutative R-algebra A and ideal I ⊆ A such that I 2 = 0 and for every R-algebra

morphism S → A/I , there is a map S → A lifting this morphism. In other words,

the dotted arrow that makes the diagram

S A/I

R A

commute exists.

THEOREM A.2.4 ([Gro64a], 19.1.12). — Suppose R is a ring, M is a finitely

generated R-module, N a projective R-module, f : M → N a morphism. For
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all prime ideals p ⊆ R, f ⊗ id : M ⊗R κ(p) → N ⊗R κ(p) is injective if and only

if there are finitely many x1, . . . xm ∈ M such that Mp = 〈x1, . . . xm〉 and finitely

many linear forms y1, . . . ym on N such that

det(yi ( f (x j ))i , j ∉ p.

THEOREM A.2.5 ([Gro64a], 22.6.6). — Suppose R is a ring, S is a formally

smooth R-algebra, J ⊆ S is an ideal, T = S/J . Moreover, suppose J/J 2 is a finitely

generated T -module. Then T is a formally smooth R-algebra if and only if, for

all primes p⊆ T , Tp is a formally smooth R-algebra.

THEOREM A.2.6 ([Gro64a], 22.6.4). — Suppose R is a ring, S is a formally

smooth R-algebra, J ⊆ S is an ideal, T = S/J . Moreover, suppose J/J 2 is a finitely

generated T -module. If p ⊆ T is a prime ideal and κ(p) is the residue field at

Tp, p′ ⊆ S is the prime corresponding to p, q⊆ R the prime corresponding to p′,
then Tp is a formally smooth R-algebra if and only if Tp is a formally smooth

Rq-algebra if and only if the morphism

d |J ⊗S id : (J/J 2)⊗C κ(p) →ΩS/R ⊗S κ(p)

is injective.

COROLLARY A.2.7. — Suppose R is a ring, S a formally smooth R-algebra

through a morphism f , T = S/J for some ideal J ⊆ S such that J/J 2 is a finitely

generated T -module. Then T is a formally smooth R-algebra if and only if, for all

primes p⊆ T , there are finitely many x1, . . . xm ∈ J such that (J/J 2)p = 〈x1, . . . xm〉
and finitely many linear forms y1, . . . ym on ΩS/R such that

det(yi ( f (x j )))i , j ∉ p.

A.2.2 Smooth morphisms of k-varieties

Definition A.2.8. — A point p ∈ X is said to be nonsingular (or regular) if

dimκ(p)
mp

m2
p
= dimOX ,p . The set of regular points of X is called Xreg.

Definition A.2.9. — A morphism f : X → Y is said to be smooth of relative

dimension d at p ∈ X , where d ≥ 0 is an integer, if there exist affine open neigh-

bourhoods U ⊆ X of p and V = SpecR ⊆ Y of f (p) and an open subscheme

W ⊆ SpecR[x1, . . . xd+r ]/( f1, . . . fr ) such that the following diagram commutes,

U W SpecR[x1, . . . xd+r ]/( f1, . . . fr )

V SpecR

f |U

∼=

∼=

ρ|W ρ
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and det
(
∂ f j

∂xi

)
i , j≤r

is nowhere zero on W .

Definition A.2.10. — A point p ∈ X is said to be smooth (of relative dimension

d) if the structure morphism X → Speck is smooth (of relative dimension d) at

p. Denote the set of smooth points by Xsm.

THEOREM A.2.11. — Suppose p is a k-rational point, i.e. κ(p) = k. Then

p is regular and OX ,p has dimension d if and only if p is smooth (of relative

dimension d). In particular,

Xreg(k) = Xsm(k).

THEOREM A.2.12. — A morphism ϕ : X → Y is smooth at p ∈ X if and only if

there are an affine neighbourhood U = SpecS around p and an affine neigh-

bourhood V = SpecR around ϕ(p) such that the induced ring map R → S is

formally smooth and of finite presentation, i.e. there exist integers n,m ∈N
and polynomials f1, . . . fm ∈ R[x1, . . . xn] such that S ∼= R[x1, . . . xn]/( f1, . . . fm) as

R-algebras.
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THE material covered in this chapter comes from [EP05].

B.1 Valuations, valuation rings and places
Definition B.1.1. — Let k be a field and Γ be an ordered abelian group. A

valuation v on k is a surjective map v : k → Γ∪ {∞} such that, for all x, y ∈ Γ,

1. v(x) =∞ implies x = 0,

2. v(x y) = v(x)+ v(y),

3. v(x + y) ≥ min(v(x), v(y)).

Its rank is the rank of the value group Γ, i.e. the order-type of the collection of

proper convex subgroups of Γ.

IF Γ = {0}, we obtain the trivial valuation; if Γ has rank 1, then it can be

observed that Γ≤ (R,+).

OUT of a valued field (k, v) = (k, v,Γ) we can build Ov = {x ∈ k | v(x) ≥ 0},

the valuation ring of (k, v). It is a local ring with maximal ideal Mv , and the

residue field kv =Ov /Mv is called the residue field of (k, v). Sometimes, the

value group and residue field of (k, v) are denoted, respectively, by vk and kv .

VALUATION rings often appear in other settings (for example, in the theory

of DVRs, discrete valuation rings). A valuation ring of k is often defined as a

subring O of k such that, for all x ∈ k×, either x ∈O or x−1 ∈O. Then,

PROPOSITION B.1.2. — Suppose O⊆ k is a valuation ring, then there exists a

valuation v on k such that O=Ov .

THE value group is precisely the quotient Γ := k×/O×, which can be rewritten

additively and ordered by xO× ≤ yO× if and only if y
x ∈ O. At this point, the

valuation can be defined by v(x) = xO× ∈ Γ. Moreover, the unique maximal

ideal of O is exactly M :=O \O×. The trivial valuation is then determined by

O= k.

Definition B.1.3. — Two valuations vi : k → Γi ∪ {∞}, for i ∈ {1,2}, are said

to be equivalent if Ov1 = Ov2 . Equivalently, if there is an order-preserving

isomorphism ρ : Γ1 → Γ2 such that ρ ◦ v1 = v2.
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This establishes a bijection

{valuation rings of k} ←→ {valuations on k}

∼
where v1 ∼ v2 if they are equivalent (i.e. up to order-preserving isomorphism

of the value groups).

THERE is one more gadget that turns out to be essentially equivalent to a

valuation.

Definition B.1.4. — Suppose k and K are fields. A map ϕ : k → K ∪ {∞} is a

place of k if, for all x, y ∈ k,ϕ(x+ y) =ϕ(x)+ϕ(y),ϕ(x · y) =ϕ(x) ·ϕ(y),ϕ(1) = 1.

FOR any placeϕ on k, O=ϕ−1(K ) is a valuation ring of k whose maximal ideal

is M=ϕ−1({0}) and whose residue field is ϕ(O). Viceversa, for every valuation

ring O of k with maximal ideal M, the map

ϕ(x) =
x +M, x ∈O,

∞, x ∈ k \O

defines a place ϕ : k → O
M ∪ {∞}.

Definition B.1.5. — If k ⊆ F , then a place ϕ on F is a k-place if it is the identity

on k.

Definition B.1.6. — Two places on the same field are equivalent if there is an

isomorphism of their residue fields that commutes with the places.

B.1.1 Extending valuations

SUPPOSE you have a field extension k1 ⊆ k2 and two valued fields (k1,O1) and

(k2,O2). We say that O2 is a prolongation, or an extension, of O1 if O2∩k1 =O1.

We write (k1,O1) ⊆ (k2,O2). The classical case is that of a field extension k1 ⊆ k2

and a valuation ring on k2, O2; in this scenario, O1 := k1∩O2 is again a valuation

ring and O2 extends O1.

THE other way around is trickier, and uses the following theorem, also known

as Chevalley’s extension theorem.

THEOREM B.1.7. — Suppose k is a field, R ⊆ k is a subring and p⊆ R is a prime

ideal. Then there exists a valuation ring O of k such that R ⊆O and M∩R = p,

where M⊆O is the maximal ideal.

COROLLARY B.1.8. — Suppose k1 ⊆ k2 is a field extension and O1 ⊆ k1 is a

valuation ring. Then there is an extension O2 of O1 in k2.

THE consequences of Chevalley’s theorem are more far-reaching. For exam-

ple,
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COROLLARY B.1.9. — Every valuation ring O⊆ k is integrally closed in k.

COROLLARY B.1.10. — If k ⊆ K is a field extension and O′ is a valuation ring

of K , then every valuation ring O⊇O′∩k can be extended to a valuation ring

O′′ ⊇O′ of K .

B.1.2 The algebraic case

IF (k1,O1) ⊆ (k2,O2), then to each i = 1,2 is associated a valuation vi : ki →
Γi ∪ {∞} with Γi

∼= k×
i /O×

i . Since O×
1 = O×

2 ∩k×
1 , the composition of k×

1 → k×
2

with the projection k×
2 → k×

2 /O×
2
∼= Γ2 descends to a morphism

Γ1
∼= k×

1 /O×
1 → k×

2 /O×
1
∼= Γ2,

hence we can assume Γ1 ≤ Γ2.

Definition B.1.11. — Let e := [Γ2 : Γ1]. We call it the ramification index of this

extension.

SIMILARLY, we can regard the residue field k1 as a subfield of k2.

Definition B.1.12. — Let f := [k2 : k1]. We call it the residue degree of the

extension.

Definition B.1.13. — An extension such that e = f = 1 is called immediate.

THEOREM B.1.14. — Suppose (k1,O1) ⊆ (k2,O2) is such that k1 ⊆ k2 is algebraic.

Then Γ2/Γ1 is a torsion group and k1 ⊆ k2 is an algebraic extension. Moreover,

Γ1 and Γ2 have the same rank.

FINALLY, if we consider an algebraic extension k1 ⊆ k2 and let

k2 ∩k s
1 = {x ∈ k2 | x is separable over k1}

and denote by [k2 : k1]s = [k2 ∩k s
1 : k1], then

THEOREM B.1.15. — Suppose k1 ⊆ k2 is algebraic and [k2 : k1]s <∞. If O is a

valuation ring of k1, then

#{prolongations of O to k2} ≤ [k2 : k1]s .

NOTICE that

[k2 : k1] = [k2 : k2 ∩k s
1] · [k2 : k1]s

and we denote by [k2 : k1]i = [k2 : k2 ∩k s
1]. We call the extension purely insepa-

rable if [k2 : k1]i = 1.

COROLLARY B.1.16. — If k1 ⊆ k2 is purely inseparable, then every valuation ring

O of k1 extends uniquely to k1.
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COROLLARY B.1.17. — Suppose k is separably closed and O( k is a valuation

ring. Then there is a unique O ⊆ kalg and the extension is immediate. In par-

ticular, the residue field of O is algebraically closed and the value group Γ is

divisible.

IF, moreover, we assume that k ⊆ K is finite, then let n = [K : k] and denote

by r the number of prolongations of a fixed valuation ring O⊆ k to K .

THEOREM B.1.18. — Let O1, . . .Or be said prolungations of O to K . Then,

r∑
i=1

e(Oi /O) f (Oi /O) ≤ n.

B.2 Henselian fields
Definition B.2.1. — A valued field (k,O) is henselian if O has a unique prolon-

gation to every algebraic extension k ⊆ K .

AS an example, consider a rank-one valuation v on a complete field k.

LEMMA B.2.2. — Suppose (k1,O1) ⊆ (k2,O2) is an algebraic valued field exten-

sion. If (k1,O1) is henselian, then so is (k2,O2).

LEMMA B.2.3. — A valuation ringO is henselian if and only if it extends uniquely

to k s .

THEOREM B.2.4. — Suppose (k,O) is a valued field with maximal ideal M,

residue field k, and let v : k → Γ∪ {∞} be the associated valuation. Denote

by f 7→ f the map O[X ] → k[X ] induced by the residue map O → k. Then,

equivalently,

1. (k,O) is henselian,

2. for each f ∈O[X ] and a ∈O such that f (a) = 0 and f
′
(a) 6= 0, there exists

b ∈O such that b = a and f (b) = 0,

3. for each f ∈O[X ] and a ∈O with v( f (a)) > 2v( f ′(a)), there exists b ∈O

with f (b) = 0 and v(a −b) > v( f ′(a)),

4. every polynomial of the form X n +a1X n−1 +·· ·+an−1X +an ∈O[X ] such

that a1 ∉M but a2, a3, . . . an ∈M has a zero in k.

COROLLARY B.2.5. — Suppose O⊆O′ are two valuation rings on k with corre-

sponding maximal ideals M′ ⊆M. Let O =O/M′ ⊆ k =O′/M′. Then (k,O) is

henselian if and only if both (k,O′) and (k,O) are henselian.
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B.2.1 The valuation topology

GIVEN a valuation v : k → Γ∪{∞}, for each γ ∈ Γ and a ∈ k we define the open

ball of radius γ around a to be

Bγ(γ) = {x ∈ k | v(x −a) > γ}.

THEOREM B.2.6. — The subsets of k of the form Bγ(γ) form a basis of neigh-

bourhoods of a and they thus induce an Hausdorff topology on k.

WE call this topology the induced topology, or the valuation topology.

PROPOSITION B.2.7. — Sets of the form

1. Bγ(γ),

2. {x ∈ k | v(x −a) ≥ γ},

3. {x ∈ k | v(x −a) ≤ γ},

4. {x ∈ k | v(x −a) = γ},

as γ varies in Γ and a ∈ k, are all clopen subsets in the valuation topology. In

particular, O and M are clopen.

PROPOSITION B.2.8. — The field operations are continuous with respect to the

valuation topology.

SAY that two valuation rings O1 and O2 on k are dependent if O1O2, the

smallest subring of k containing both O1 and O2, is a proper subring of k.

Moreover, if O⊆ k is a valuation ring, then any overring O′ ⊇O is a valuation

ring, called a coarsening of O. Then, two dependent valuation rings O1 and O2

have a common coarsening (precisely O1O2). Other examples of coarsening

come from the localizations Op for a prime ideal p⊆O, and these are precisely

in one-to-one correspondence with the convex subgroups of Γ.

THEOREM B.2.9. — Two non-trivial valuation rings O1 and O2 on k are depen-

dent if and only if they induce the same topology on k.

IN particular, if O⊆O′ is a non-trivial coarsening, then O and O′ are depen-

dent and thus they induce the same topology.

B.2.2 V-topologies

VALUATION topologies fit into the more general framework of V-topologies.
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Definition B.2.10. — A topology τ on k is a V-topology if it is a non-discrete

field topology and moreover for any neighbourhood U of zero, (k \ U )−1 is

bounded, i.e. for every open neighbourhood V of zero, there is a ∈ k× such that

a · (k \U )−1 ⊆V .

ORDER, valuation and absolute value topologies are V-topologies. These are,

surprisingly, the only ones.

PROPOSITION B.2.11. — Suppose that τ is a field topology on k. If τ is a V-

topology, then it is induced by some absolute value or valuation on k.

THERE is an analogue of henselianity in this setting, t-henselianity, although

one must be aware that the topology induced by a valuation does not contain

enough information to reconstruct the valuation itself. In particular, it is not

true that a valuation that induces a t-henselian valuation topology is henselian;

if anything, because any coarsening of the valuation would induce the same

topology.

Definition B.2.12. — A V-topology is t-henselian if for any n there is an open

neighbourhood U of 0 such that, if a0, . . . an ∈U , then

xn+2 +xn+1 +an xn +·· ·+a1x +a0

has a root in k.

HENSELIAN valuations induce t-henselian topologies. In [ZP78], the authors

introduce the notion of t-henselianity and the machinery necessary to deal

with topological fields from the model-theoretic perspective. In particular,

they prove that a non-separably closed field is t-henselian if and only if it

is elementary equivalent – in their language – to an henselian field. More

importantly, they show that non-separably closed fields admit at most one

t-henselian topology, which we shall call the t-henselian topology.

MOREOVER, t-henselian fields satisfy the implicit function theorem.

THEOREM B.2.13. — Suppose k is t-henselian. Let f ∈ k[x0, . . . xn , y] be a

polynomial and suppose a0, . . . an ,b ∈ k are such that f (a0, . . . an ,b) = 0 and

fy (a0, . . . an ,b) 6= 0. Then there are two open subsets U ,V such that for all

a′
i ∈ ai +U , i = 0, . . .n, there is a unique b′ ∈ b +V such that f (a′

0, . . . a′
n ,b′) = 0.

Moreover, the map (a′
0, . . . a′

n) 7→ b′ is continuous.
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