in ALFA Canonical lases via jet spaces BLOCKSEMINAR 2023 (Simoneramello, it → talks)

- * canonical blases in ALFA
- * jet maces
- * T- Modules

part two:

Lilben's thichotomy

- * almost internality
- * theorem 1.2 from Pillay-tiegter
- + the tricenotomy

NOTATION :

* K^{aig} = field-theoretic algebraic closure, acl(X) = acl^{eq}(X)

Some idead:
Y finite-dimensional definable set, with
parameters from some algebraically closed
difference subfield
$$k \in U$$
, $a \in Y$, $k \in k$, $a 2 2000$ of the σ -polynomial
enother algebraic difference subfield,
 $c := Cb (tp(^{\circ}/k_1)), \quad levels: generators of the
field of definition of
then $tp(c/k(ar))$ is almost internal $bc(^{\circ}/k_1)$
to the fixed field Fix (U).
 ur to changing parameters a
 $ent, the information is already been
by σ -polynomials over Fix (U).$$

Canonical bases in ACFAo

D-modules

(K,J) difference field, V fimite-dimensional K-vector space

 τ -module - (V, Σ) , where $\Sigma: (V, +) \xrightarrow{\simeq} (V, +)$ such that

 $\Sigma(cv) = \sigma(c) \Sigma(v).$

Lemma 4.1. $(V_1 \Sigma)^{\#} = \{v \in V \mid \Sigma(v) = v\}$ is a Fix(K)-vector space of dimension at most $dlul_{K}(V)$ for if $(K_1 \sigma) \models A(FA_1)$ there are $V_1, \dots V_s \in (V_1 \Sigma)^{\#}$ such that $V = \langle V_1, \dots V_s \rangle_{K}$. PROOF...

Lemma 4.2.

$$(V, \Sigma)^{\#} = \{v \in V \mid \Sigma(v) = v\}$$
 is a Fix(K)-vector space of
dimension at must dimp(V) f- if $(K, \sigma) \neq A(FA, fhere are)$
 $V_1, \dots, V_s \in (V, \Sigma)^{\#}$ such that $V = \langle V_{1}, \dots, V_s \rangle_{K}$.
PROOF. $(of \square)$
(hoose a basis B of V over K and let A be the matrix such that, if
 $v = \sum_{i=0}^{n} a_{ib}b_{i}$ then
 $\sum_{i=0}^{n} (v_{i}) := A(\sigma(a_{ib}))_{b\in B}$.
Then, as σ -modules, $(V, \Sigma) \cong (K^{d}, A\sigma)$ for some delN. No we work with
 $(K^{d}, A\sigma)$ instead. In this case, for $v \in K^{d}$, we have
 $\sum_{i=0}^{n} (v_{i}) = V \iff \sigma(v) = A^{-1}v$. Such a matrix exists
since (K, σ) is existentially closed. The columns of U form the Basis we need. \square

K alg closed of characteristic zero, $X \in K^{n}$ irreducible offine with ideal $T_{X} \in K[n_{1}, ..., n_{n}]$

Explicit description.
$$X \in K^{h}$$
 subvariety, $a \in X, m \ge 1$

$$d = \left\{ \left\{ \frac{\partial^{s}}{\partial x_{1}^{s_{1}} \cdots \partial x_{r}^{s_{r}}} : 0 \le s \le m, 1 \le i_{1} \le \dots \le i_{r} \le n, s_{1} + \dots + s_{r} = s, s_{i} > 0 \end{cases} \right\} \right\}$$

$$= \int j_{m}(X)_{a} \cong V_{a} = \{ (\mathcal{U}_{0})_{p \in \mathbb{D}} : \sum_{p \in \mathbb{D}} DP(a) \mathcal{U}_{0} = 0, \forall P \in J_{X} \} \subseteq K^{d}.$$

Important pacts: $X_1 W$ in reducible affine varieties, $W \subseteq X \times X^{\circ}$ such that $\pi_1: W \to X, \pi_2: W \to X^{\circ}$ are advariant and finite-to-one generically. Then if $(a, \sigma(a)) \in W$ is a generic point, for any m31, there is $f_m : j_m(X) a \xrightarrow{\cong} j_m(X^{\sigma})_{\sigma(a)}$ (whose graph is exactly jm (W)(a, v(a))). Moreover, (jm(X)a, f-1) is a J-module over (U,J) and, for any K=K, alg. closed, if X2 is the vanishy over K2 with generic point 10, then one can embred jm(X) a into (jm(X)a, F-15) as J-modules.

we prove the "morequer.".

Moreculer,
$$(j_{m}(X)a_{1}, f^{-1}\sigma)$$
 is a σ -module over (u, σ) and, for any $K \leq K_{1}$ alg.
closed, if X_{1} is the variety over K_{1} with generic point a_{1} , then one can
embed $j_{m}(X)a_{1}$ into $(j_{m}(X)a_{1}, f^{-1}\sigma)$ as σ -modules.
PROOF: note that, if $j_{m}(X)a = \{(u_{b})_{b \in D} : \sum_{p \in D} DP(a).u_{p} = 0, P \in I_{X}\},$
 $j_{m}(X^{\sigma})_{\sigma(a)} = \{(u_{b})_{b \in D} : \sum_{p \in D} DP(\sigma(a)).u_{p} = 0, P \in I_{X}\},$
 $= \{I\sigma(u_{p})_{p \in D} : \sum_{b \in D} DP(a).u_{p} = 0, P \in I_{X}\},$
 $= (j_{m}(X)a_{1}^{\sigma}),$
hence $f^{-1} \circ \sigma : (j_{m}(X)a_{1} +) \xrightarrow{\cong} (j_{m}(X)a_{1} +)$ and since f is a linear iso, we
have $(j_{m}(X)a_{1}, f^{-1}\sigma)$ is a σ -module.

Moreover,
$$(j_m(X)a_1, f^{+}\sigma)$$
 is a σ -module over $(U_{1,\sigma})$ and for any $K \leq K_{\Lambda}$ alg.
closed, if X_{Λ} is the variety over K_{Λ} with generic point a_{Λ} . Then one can
embed $j_m(X)a_1$ into $(j_m(X)a_1, f^{+}\sigma)$ as σ -modules.
PRODF: let W_{Λ} eve the inreducible variety over K_{Λ} whose generic point is
 $(q_1\sigma(a))$. Now, $j_m(W_{\Lambda})_{(a,\sigma(a))}$ is the graph of an isomorphism
 $f_{\Lambda}: j_m(X_{\Lambda})a \xrightarrow{\Xi} j_m(X_{\Lambda})_{\sigma(a)}$
and then $f_{\Lambda} = f|_{j_m(X_{\Lambda})a}$, which gields the required embedding.

Ilmost internality

(U, J) FACFA monster model

*

KEU alg closed difference subfield, p(x) ES1(K), X O-definable set

Some
$$K \in A$$
, $a \neq p$ with $a \downarrow A$, then $a \in acl(A, X)$.

* X is finite-dimensional if there is NEIN such

that, for all ac X,

So:
$$a \in Y \longrightarrow Cb(tp(a/k)) =: c \longrightarrow \tilde{X}$$

point weak cononical bose algebroic voniety

$$\Rightarrow \tilde{X} \text{ is determined by } jm(\tilde{X})_{\alpha} \leq jm(X)_{\alpha} \text{ for all } m\in \mathbb{N},$$

by compactments we only need to check $j_{\mathcal{M}}(\tilde{X})_{\alpha} \leq j_{\mathcal{M}}(X)_{\alpha}$ for \mathcal{M} ?
 $\tilde{X} = V(f_{1}, \dots, f_{e}), f_{i} = f_{i}(c) \longrightarrow \text{ we may look at } (\tilde{X}_{d})_{d\in U},$
 $\tilde{X}_{d} = V(f_{1}(d)_{1}, \dots, f_{e}(d))$
 $\tilde{X}_{d} = \tilde{X} \iff jm(\tilde{X}_{d})_{\alpha} = jm(\tilde{X})_{\alpha} \text{ then } \mathbb{N} \text{ eget } jm(\tilde{X})_{\alpha} = (j_{\mathcal{M}}(X)_{\alpha}, f^{-1}\sigma).$
 $\Rightarrow if f : jm(\tilde{X})_{\alpha} \cong jm(\tilde{X}^{\sigma})_{\sigma(\alpha)}, \text{ then } \mathbb{N} \text{ eget } jm(\tilde{X})_{\alpha} \subseteq (j_{\mathcal{M}}(X)_{\alpha}, f^{-1}\sigma).$

Now, choose a basis
$$b \in (j_{H}(X)_{a_{1}} f^{+} \sigma)^{\#}$$
, i.e. rewrite $(j_{H}(X)_{a_{1}} f^{+} \sigma) \equiv (K^{d}, \sigma)$
so that $j_{H}(\tilde{X})_{a} \cong L_{H}$ defined over $F(u)$.
 $\Rightarrow e_{H} \subseteq F(u)$, coefficients of equations
finite
 $\Rightarrow C \in K(a, b, e_{H})$.
point basis parameters for L_{H}
morral: c depends algebraically on
independents data over $F(u)$

A few words on SU-rank:

$$P \in S(K), a \neq p,$$

$$SU(p) \geq 0,$$

$$SU(p) \geq \alpha, \alpha \text{ limit } \Leftrightarrow SU(p) \geq \beta \neq \beta \leq \alpha$$

$$SU(p) \geq \alpha + 4 \iff \beta = 1 \text{ here is } K \leq F \text{ with}$$

$$a \neq F \notin SU(a/F) \geq \alpha.$$

$$N = SU(p) = \text{least ordinal } SU(p) \neq \alpha + 1.$$
Facts. $SU(a/K) = 1$: $a \notin a \ll k \leq F$ and for every $K \leq F$ withen $a \downarrow F$

or
$$a \in acl_{F}(F)$$
. Further, a is transformally algebraic over K.

PROOF. Suppose p is non-modular : take a = pⁿ, b = p^m with $c := Cb(\alpha/k(b)) \notin acl(k(a))$. Now by SU-rank 1, trideg(k(a)/k) < ∞ , so the theorem applies and tp(e/k(a)) is almost internal to Fix (UI, i.e. there is KEA with CUA and CEACH (A, R). Reamange 6 as follows: there is mo EIN such that
$$\begin{split} b_{j} \in \operatorname{acl}(b_{1} \cdots b_{m_{0}}, K) \; \forall j \geqslant m_{0} + 1 \; \& \; b_{i} \; \bigcup \; b_{i} \cdots b_{i-1} \; \forall i \leq m_{0}. \\ & \underset{K}{\overset{m_{0}-1}{\lim}} \\ \text{Now, by definition } \overline{c} \; \bigotimes \; b_{1} \cdots b_{m_{0}} \; , \; \text{hence for some } i, \; \overline{c} \; \boxtimes \; b_{i+1} \; , \; i.e. \\ & \underset{K}{\overset{m_{0}-1}{\lim}} \\ b_{i+1} \; \in \; \operatorname{acl}(Kb_{1} \cdots b_{i}; \overline{c}) \leq \operatorname{acl}(Ab_{1} \cdots b_{i}; k) \; \& \; \text{further, we may assume} \end{split}$$
b JA, hence b JA (because $\overline{c} \downarrow A$). Thus, $b_{i+1} \downarrow A b_1 \dots b_i$.

This is exactly showing that p is almost internal to
$$k$$
:
there is $b_{it_1} \neq p$, and there is $K \leq Ab_1 \cdots b_i^+$, with
 $b_{it_1} \downarrow Ab_1 \cdots b_i^+ \notin b_{it_1} \in Acl(Ab_1 \cdots b_i k)$.
 K