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James Ax (10 January 1937 – 11 June
2006) and Simon Kochen (14 August
1934 – ) shared the Frank Nelson Cole
Prize for number theory for their results
on Diophantine problems in local fields.
Roughly at the same time, on the other
side of the Berlin Wall, Yuri Ershov (1
May 1940 – ) proved similar results.

This is the first of two talks on the classical model theory of henselian
valued fields. Following Chatzidakis, we prove that an henselian

The source are the course notes Théorie
des Modèles des corps valués, 2008.

equicharacteristic zero valued field eliminates quantifiers in the Pas
language, and derive the Ax-Kochen/Ershov principle.
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What is a valued field, again?

These concepts were explained already at some point by somebody
else. The point of this section is twofold: fix notation and remind
everyone of things which might have been forgotten in the long time
that has passed since then (despite the reinforced learning technique
of providing pizza together with the material).

Definition 1. A valuation on a field K is the datum of a surjective map
v : K → Γ ∪ {∞}, where (Γ,+,<, 0) is an ordered abelian group and

1. v(x) = ∞ if and only if x = 0,

2. v(xy) = v(x) + v(y),

3. v(x + y) ≥ min{v(x), v(y)}.
Some people denote by vK the value
group and Kv the residue field. It is
a rather useful notation when more
valuations appear on the same field, or
some coarsening argument is involved.
It is also crucial if your blackboard Ks
and ks are not distinguishable.

Definition 2 (gadgets). The valuation ring of a valued field (K, v) is the
subring O = {x ∈ K | v(x) ≥ 0}. Its unique maximal ideal is denoted by
m = {x ∈ K | v(x) > 0} ⊆ O. The quotient field is called the residue field
k = O/m.
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We denote by π : O → k the quotient map (also called the residue
map). It is sometimes possible to extend π “coherently” to the whole
of K at the cost of some assumptions on K (if you are quietly whisper-
ing to yourself “this must be a saturation thing”, you’re right) and of
losing “control” on what happens on m. We’ll discuss this later on.

Example 3 (your friendly neighbourhood valued field). The p-adics
(Qp, vp) have Z as value group and Fp as residue field.

If there is any risk of confusion, we place subscripts on the gad-
gets: OK, mK, kK, ΓK, and so on.

Remark 4. Let Lr = {+,−, · , 0, 1} be the language of rings. Then
one might enlarge Lr to a language for valued fields in various ways, e.g.
Lv = Lr ∪ {O} or Ld = Lr ∪ { | }.

Angular components and where to find them
In the case K = k((t)) there is an
obvious choice of ac, namely

ac( ∑
n≥N

antn) = aN .

One might check that if N = 0, i.e.
∑n≥N antn ∈ O×, then this is exactly the
residue map. One might build a similar
map on Qp by ac(p) := 1.

The name “angular component” is a
bit misleading. In fact, if we think of
elements of k((t)) as generalized Taylor
series, the ac map does not return the
coefficient angulaire of the function, i.e.
the first derivative; it returns, instead,
the leading coefficient of the series.

Definition 5. An angular component is a map ac : K → k such that

1. ac(0) = 0,

2. ac|K× : K× → k× is a multiplicative group morphism,

3. ac(x) = π(x) for any x ∈ O×, in other words ac extends the residue
map on the units.

Angular components arise from sections of the value group: if
s : Γ → K is a section of the valuation, then ac(x) := π(x/s(x)) is
an angular component map. These sections in turn exist under some
assumptions on the ambient structure. In most “natural” examples,
one can write down these sections explicitly, and thus obtain explicit
angular components; in general, it is a matter of saturation.

Lemma 6. Every valued field has an elementary extension which admits a
section of the valuation.

Sketch. Starting with a pure subgroup ∆ ≤ Γ, together with a partial
section ∆→ K, one might always find an elementary extension where
this partial section extends. The result follows from iteration.

The Ax-Kochen/Ershov principle, or rather: Pas’ theorem
(to the tune of ’Let it be’)

When I find myself in times of trouble
Valued fields come to me
Complete first-order theories
A-K-E

Definition 7. We denote by LPas the three-sorted language made up by:

1. the language of rings Lr = {+,−, · , 0, 1} on the sorts K and k,

2. the language of ordered abelian groups Lg = {+,−,<, 0, ∞},

3. a symbol for a map v : K→ Γ and a symbol for a map ac : K→ k.
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Definition 8. Let T0 be the LPas-theory that prescribes, of models (K, k, Γ ∪
{∞}; v, ac):

1. K is a field, Γ is a ordered abelian group and v : K → Γ ∪ {∞} is a
valuation,

2. (K, v) is henselian,

3. the map π : O→ k defined by π(x) = ac(x) if v(x) = 0, and π(x) = 0
otherwise, is a surjective ring morphism with kernel m,

4. k is a field of characteristic 0.

Under these hypotheses we have that O/m ∼= k, and we identify them.
Moreover, given some fixed field k and ordered abelian group Γ, let T be the
theory obtained from T0 by adjoining the full Lr-theory of k and the full
Lg-theory of Γ.

One might say, Oh, come on, only a
relative result?. As underwhelming as
it is, one cannot really hope for more; if
kK and ΓK are bad, then (K, v) ought to
be atleast as bad: both these structures
are interpretable in (K, v). Thus, all
results around the model theory of
(K, v) will have to be relative to the
properties of kK and ΓK . If your residue
field is e.g. Q, you can’t really expect
the valued field to be a decent, polite
valued field.

The idea is that this theory should capture the whole model the-
oretical information that contained in a henselian valued field of
equicharacteristic zero; in other words, as an LPas-structure (K, v)
is little more than the sum of kK and ΓK. This will follow from
completeness, which we obtain for free from a relative quantifier
elimination result.

Theorem 9 (Pas). T eliminates the K-quantifier.

This partial form of quantifier elimination will follow from a
back-and-forth lemma:

Lemma 10. Suppose Σ is a set of L-formulae closed under Boolean com-
binations. Let T be a theory and κ > |L|. Then the following is suffi-
cient to obtain quantifier elimination down to formulae in Σ: given two
κ-saturated models M, N of T and an isomorphism between substructures
f : A ⊆ M → B ⊆ N with |A| < κ that preserves Σ-formulae, for any
a ∈ M there is an isomorphism g ⊇ f between substructures of M and N
that preserves Σ-formulae and whose domain contains a.

Note that the isomorphism f : A → B
is an isomorphism of substructures,
hence it is really threefold: there
is an isomorphism f : A ∼−→ B
of valued fields, an isomorphism
fr : kA

∼−→ kB of fields, and an
isomorphism fv : ΓA

∼−→ ΓB. The
latter two can really be recovered from
the first one, by composing with the
relevant maps.

We then set-up a back-and-forth of this form: start with two
LPas-structures (K, ΓK, kK), (L, ΓL, kL) � T which are ℵ1-saturated.
Let Σ be the set of formulae which only contain quantifiers over Γ

and k. Choose (A, ΓA, kA) and (B, ΓB, kB) countable substructures
respectively of M and N. Given an isomorphism f : A → B that
preserves Σ-formulae, and a ∈ M \ A, we wish to extend f to a
isomorphism of substructures whose domain contains a. To do so, we
extend f to some (C, ΓC, kC) � (K, ΓK, kK), countable, with a ∈ C; the
procedure requires interweaving several steps (“dovetailing”):

1. extend kA to kC, obtaining (A, ΓA, kC),
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2. extend ΓA to ΓC, obtaining (A, ΓC, kC),

3. replacing A with Ah,

4. extending A to make π surjective on kC,

5. extending A to make v surjective on ΓC,

6. extending (A, ΓC, kC) to the immediate extension (C, ΓC, kC).

This will be done in one of the next sections. But before that, let us
see an application.

The Ax-Kochen/Ershov principle, or rather: Pas’ corollary
The ≡ on the LHS is left purposefully
generic. This is true for any language of
valued fields, even without an angular
component: this can be eliminated
upon moving to a saturated extension,
and is hence not taking any part in
determining the theory of the structure.

Corollary 11. Given (K, v) and (L, w) henselian valued fields of equicharac-
teristic 0. Then,

(K, v) ≡ (L, w) ⇐⇒ [kK ≡Lr kL ∧ ΓK ≡Lg ΓL].

Proof. Note that we can always move to elementary extensions of
(K, v) and (L, w) enriched with ac-maps, hence for the right to left
direction it is enough to show that the theory T is complete. To do
so, it is enough to notice that two of its models, say (K, ΓK, kK) and
(L, ΓL, kL), both share a substructure, namely (Q, {0}, Q). Since T
eliminates the K-quantifier, and ΓK ≡ ΓL and kK ≡ kL, this implies
that (K, ΓK, kK) ≡ (L, ΓL, kL).

The left to right direction requires less machinery: both the residue
field and the value group are uniformly interpretable in (K, v) and
(L, w) (with whatever valued fields language you choose), and hence
they are elementarily equivalent if the ambient structures are.

The actual Ax-Kochen/Ershov principle!

For a family of L-structures (Mq)q∈P, consider a non-principal ultra-
filter µ on the set of primes P. Let ∏q∈P Mq/µ be the ultraproduct
with respect to µ.

Corollary 12. ∏q∈P Qq/µ ≡ ∏q∈P Fq((t))/µ.

Proof. The two are henselian equicharacteristic 0 valued fields with
the same residue field (the ultraproduct ∏q∈P Fq/µ) and the same
value group (Ẑ).

Before going on to the (rather tiresome) proof, let me mention
one more result that might motivate all of this work. As a direct
application of these results,

Corollary 13. Consider finitely many polynomials f1, . . . f` ∈ Z[t]. For all
but finitely many primes q, every solution of f1(t) = · · · = f`(t) = 0 in Fp

gives rise to a solution in Zp.
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The path to hell is paved with back-and-forth arguments

We finally come to the proof. As stated before, we start with two
LPas-structures (K, ΓK, kK), (L, ΓL, kL) � T which are ℵ1-saturated. We
take Σ to be the set of formulae which only contain quantifiers over
Γ and k. We’d like to write down a recipe that, given the following
ingredients:

1. (A, ΓA, kA) and (B, ΓB, kB) countable substructures, respectively of
M and N,

2. an isomorphism f : A→ B that preserves Σ-formulae,

3. a ∈ M \ A,

produces a new isomorphism of substructures g ⊇ f that still pre-
serves Σ-formulae and whose domain contains a. More precisely,
given (C, ΓC, kC) � (K, ΓK, kK) which is countable and contains a we
wish to extend f to C. If I forget (I will forget) assume that the

new isomorphism is expected to respect
Σ-formulae.

Step 0 (the one that everyone forgets). The language we have
chosen for the Γ sort forces ΓA ≤ ΓK. However, the language we
have chosen for K and k allows the possibility that A and kA are
only rings – we didn’t include the inverse map! This is not really
a problem: there is a canonical way to extend A and kA to a field –
namely, moving to the field of fractions. The valuation extends in a
canonical way as well: v(a/b) = v(a)− v(b) for any a, b 6= 0 from K;
further, ac(a/b) = ac(a)/ac(b). The isomorphism f extends uniquely
to an isomorphism of the fraction fields (again, f (a/b) = f (a)/ f (b)
for a, b 6= 0).

It is then safe to assume that both A and kA are fields. By saying “extending kA to kC ,” what
I really mean is: prescribe a unique
recipe to extend the given map f to the
structure (A, ΓA, kC), so that we may
assume that kA = kC . This wording will
appear again in the next steps, always
with this meaning. In fact, the whole
proof rests on the “assumption” – read,
Steps 1-5 – that one can only work with
immediate extensions.

Step 1: extending kA to kC.
Since kC is countable, let (ci)i<ω be an enumeration of it. Before

writing down the details, who might obscure the content, let me
explain the idea: a “new” element – say, c0 – that has to be added
to kA must be mapped to an element b0 ∈ kL that has the same
relationship to kB as c0 has to kA. This is encoded in the Lr(kA)-type
of c0, which can be readily translated into an Lr(kB)-type by letting
fr – which is an isomorphism, so “preserves information” in the
strongest sense possible – act on the parameters. Formally, consider
the type p(x) = tpk(c0/kA). Consider the type q(y) given by the
following procedure: if ϕ(x, c̄) ∈ p(x), where c̄ is a tuple from kA,
then ϕ(y, fr(c̄)) ∈ q(y).
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Note that p(x) records whether c0
was algebraic or transcendental over
kA, and hence the same will hold for
b0 over kB. The construction of the
new isomorphism is then a purely
field-theoretic question.

Since L is ℵ1-saturated, we can realize q(y): let b0 � q(y). Then the
map c0 7→ b0 extends to an isomorphism f ′r : kA(c0)→ kB(b0).

We can thus extend f to the isomorphism of LPas-structures

( f , fv, f ′r) : (kA, ΓA, kA(c0))
∼−→ (kB, ΓB, kB(b0)).

We need to check that the new isomorphism preserves Σ-formulae.
However, a moment of unpleasant yet straightforward syntactic
reflection will bring us to the conclusion that, to preserve Σ-formulae,
one really only needs to preserve formulae of the form

ψ0(x0) ∧ ψ1(v(t1(x)), y1) ∧ ψ2(ac(t2(x)), y2)

where ψ0(x0) is a quantifier-free Lr-formula with x0 of sort K, ψ1(x1, y1)

is an Lg-formula and ψ2(x2, y2) is an Lr-formula, with x2, y2 of sort k,
and further t1 and t2 are tuples of terms obtained from the field op-
erations. After this shortcut, it is relatively immediate to notice that As the K-sort of A didn’t change, we

don’t need to check what happens to
v and ac, as the compatibility will be
automatically satisfied.

the new isomorphism preserves these formulae (essentially because
of the compatibility with ac and v).

We repeat the procedure we have just described countably many
times, thus exhausting (ci)i<ω. We can hence assume that f is an
isomorphism defined on the substructure structure (A, ΓA, kC).

Step 2: extending ΓA to ΓC.
This procedure mirrors the procedure in Step 1: we take a new

element in ΓC, take its type over ΓA, realize it on the other side of the
river by virtue of the isomorphism fv and map one new element to
the other. The new isomorphism will then again preserve Σ-formulae.
Note that this procedure didn’t touch the k-sort, hence we can repeat
it countably many times without breaking what we did in Step 1.
From now on, we can assume that f is defined on (A, ΓC, kC).

Interlude: in the next steps, we shall seek to extend f on the K-sort,
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while still preserving Σ-formulae. Note that, by the annoying syntac-
tic meditation we performed a couple of paragraphs above, this is
unnecessary: if we extend f to f ′, defined on some A′, then surely f ′

will preserve ψ0 (as it is quantifier-free), f ′v will preserve ψ1 (since for
any a ∈ A′ we have v(t1(a)) ∈ v(A) = ΓC) and f ′r will preserve ψ2

(since for any a ∈ A′ we have ac(t2(a)) ∈ kA = kC). By virtue of Steps
1 and 2, we then only need to check that f ′ is a LPas-isomorphism.

Step 3: extending A to Ah.
Note that C (as a valued field) is henselian, since henselianity is a

first-order property. In particular, then, by the universal property of
henselizations C will contain a copy (over A) of Ah. Let’s call it Ah.
One can then argue that Ah = C ∩ Aalg, and similarly Bh = L ∩ Balg.
In particular, f extends to f ′ : Ah ∼−→ Bh. We need to check that is
a LPas-isomorphism: as Ah is an immediate extension (i.e., it has the
same residue field and value group), given a ∈ Ah \ A, there is a′ ∈ A
such that v(a− a′) > v(a) = v(a′), in particular then a = a′(1 + u)
with v(u) > 0, so ac(a) = ac(a′). Hence vh( f (a)− f (a′)) > vh( f (a)),
and ac( f (a)) = ac( f (a′)) = f (ac(a)).

The new map ( f ′, fv, fr) defined on (Ah, ΓC, kC) is a isomorphism
of LPas-structures, and thus we may assume that A = Ah (i.e., A is
henselian).

Interlude: at this point, it is worth noting that it is entirely possible
that v(A×) ( ΓA and ac(A) ( kA. In other words, the residue field
of A might be strictly smaller than kA, and its value group might
be strictly smaller than ΓA. We then have to extend f to something
with residue field kA or, from the opposite point of view, “lift” the
full kA to an extension of A. This step will take the difficulty of the
argument up a notch.

Step 4: extend f to a subfield D ⊆ C such that π(OD) = kD.
Denote by k−A the residue field of A, with valuation ring OA. Sim-

ilarly, denote by k−B the residue field of B, with valuation ring OB.
Take α0 ∈ kC \ k−C . We have two possibilities: either α0 is algebraic over
k−A , or it is trascendental.

Step 4.a: α0 is algebraic over k−A . Let P(t) ∈ OA[t] be such that
P̄(t) is the minimal polynomial of α0 over k−A , and P and P̄ have
the same degree. Then P(t) is also irreducible and, since kK has
characteristic zero, α0 is a simple zero of P̄ and hence it lifts to a ∈ OC

by henselianity. In particular, P(a) = 0 and π(a) = α0.
Let P f (t) be the polynomial obtained by letting f act on the coeffi-

cients of P. As f is an isomorphism, P̄ fr (t) is irreducible over k−B and
has fr(α0) as a simple root. By henselianity once again, there is b ∈ L
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such that π(b) = fr(α0) and P f (b) = 0. We extend f to f ′ defined on
A(a) in the only way imaginable: by extending the map a 7→ b.

Note that, if n = deg P, then 1, π(a), . . . π(an−1) are k−A-linearly
independent, and hence

v(
n−1

∑
i=0

ciai) = min
i=0,...n−1

{v(ci)}.

Similarly, 1, π(b), . . . π(bn−1) are k−B -linearly independent. In particu-
lar, the map f ′ is an isomorphism of valued fields between A(a) and
B(b). As the value groups of A and A(a) are the same, any element
of A(a) can be written as ub, where v(u) = 0 and b ∈ A. Hence f ′

commutes both with π and ac, in particular it is a LPas-isomorphism.
Step 4.b: α0 is not algebraic over k−A . Pick a ∈ C with π(a) = α0 and

b ∈ L with π(b) = fr(α0). Both a and b are transcendental over A and
B and hence, for any c0, . . . cn ∈ A,

v(∑
i

ciai) = min
i

v(ci),

v′(∑
i

f (ci)bi) = min
i

v′( f (ci)) = fv(min
i

v(ci)) = fv(v(∑
i

ciai)),

so the map f ′ : A(a) → B(b) is an isomorphism of valued fields,
which is again a LPas-isomorphism.

Upon repeating this procedure, we may assume that k−A = kA = kC,
in other words that the residue field of A is precisely kC. Once again, it is worth reminding

that by “ f ′ is a LPas-isomorphism” I
really mean that ( f ′, fr , fv) is a LPas-
isomorphism.

Step 5: extend f to a subfield E of C such that v(E×) = ΓC.
As before, denote by Γ−A the value group of A. This procedure

will strongly imitate the previous Step: the dichotomy algebraic vs.
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transcendental will be substituted by the dichotomy torsion modulo
ΓA vs. no torsion modulo Γ−A .

Suppose α ∈ ΓA \ Γ−A , with α > 0.
Step 5.a: assume that for all natural numbers n > 0 we have

nα /∈ Γ−A . Then, given a ∈ C with v(a) = α, we necessarily have that a
is transcendental over A: otherwise, if for example

an + cn−1an−1 + · · ·+ c0 = 0

for c0, . . . cn−1 ∈ A, then

nα = v(an) = v(
n−1

∑
i=0
−cn−1ai) = min

i=0,...n−1
v(ci) ∈ Γ−A .

Similarly, if we choose b ∈ L such that v′(b) = fr(α), then b is
transcendental over B. Without loss of generality, we may assume
that ac(a) = 1 and ac′(b) = 1, and then the extension f ′ of f to A(a),
mapping a to b, is a valued field isomorphism, and hence ( f ′, fr, fv) is
an LPas-isomorphism.

Step 5.b: suppose there is n > 0 such that nα ∈ Γ−A . Take N such
minimal. Then we can choose a ∈ C with v(a) = α and aN ∈ A, and
similarly c ∈ L with cN ∈ B and v′(c) = fv(α). The element c is thus
algebraic over B, and since f (kC) � kL, we can find d ∈ OB such that

π(d) = fr(ac(a))ac(c−1)

and thus, modulo multiplying c by d, we can assume without loss of
generality that ac(c) = fr(ac(a)). Then

f (aN) = cN(1 + u)

with v′(u) > 0. We may choose d ∈ L with π(d) = 1 and dN = 1 + u,
so let b := cd. By construction, f ′ : A(a) → B(b) sending a to b is an
LPas-isomorphism.

By iterating this procedure, we may assume that Γ−A = ΓA = ΓC.
Now, a moment of reflection: the Steps 3, 4, and 5 have not

touched ΓA or kA in any way. All of the modifications happened
on the K-level, on A, and thus we haven’t ruined all of our previous
work. Phew!

Step 6: the final rush. You might think to yourself: this is easy! As
we did in Step 1 and 2, we take a new element α ∈ C \ A, identify
its type over A, translate it to the other side and realize it to obtain
a potential image of α. There is a crucial subtlety here. We will, in
a moment, realize that new elements can only be transcendental
over A; however, A has more structure that kA: there is a valuation,
which gives us a further layer, or dimension, to think about. While
any polynomial P(t) ∈ A[t] will not vanish on α, by virtue of α being
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transcendental over A, it might very well be that P tries very hard to
vanish on α. In this case, very hard means something like at the limit –
for example, it might very well be that vC(P(t)) becomes bigger and
bigger as we approach α. In this case, we’d say that α is of algebraic
type; otherwise, we’d say α is of transcendental type. If we, somehow
naively, only took some β ∈ L with the same type over B, then it
might very well be that this limit behaviour is not preserved by the
natural map A(α)→ B(β) (note that β will be transcendental over B).
We might, in other words, inadvertedly pick β of transcendental type.

Crucially, we’ll use the following two
results:

1. Any henselian valued field K in
equicharacteristic zero is alge-
braically maximal, i.e. it admits no
immediate extension of algebraic
type,

2. Any two immediate extensions of
transcendental type are canonically
isomorphic over K.

Luckily for us, Kaplansky theory tells us that not only henselian val-
ued fields in equicharacteristic zero do not have algebraic extensions,
they also don’t admit extensions of algebraic type; in other words,
α will be necessarily of transcendental type, and β as well, so that
A(α)→ B(β) is really an isomorphism of valued fields.

First of all, let us notice that no immediate algebraic extension is
available: by Ostrowski’s formula, such an extension K ⊂ L would
satisfy

[L : K] = [kL : kK][ΓL : ΓK],

from which we deduce [L : K] = 1. Hence, any choice of α is tran-
scendental. Now, α is also of transcendental type, hence for any
polynomial P ∈ A[t] there is δ ∈ ∆(α/A) = {vC(α − c) | c ∈ A}
such that vC(P(t)) is constant on Bδ(α) ∩ A. By saturation, we might
choose β ∈ L such that

vL(β− f (c)) = fv(vC(α− c)), ∀c ∈ A.

Then vL(P f (t)) will be constant on B fv(δ)( f (α′)) for any choice of
α′ ∈ Bδ(α) ∩ A. In particular, β will also be of transcendental type
over B, and hence there is a unique isomorphism of valued fields f ′ :
A(α) → B(β) that extends f . Thus ( f ′, fr, fv) is an LPas-isomorphism
as requested.

We can then use Step 3 to extend f ′ to A(a)h = A(a)alg ∩ C.
Upon iterating this procedure countably many times, we have finally
achieved A = C. We can repeat all of the above steps on the other
side of the river, for B, and we conclude the proof.
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